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Abstract

Embodied agents based on large language models

(LLMs) face significant challenges in collaborative tasks,

requiring effective communication and reasonable division

of labor to ensure efficient and correct task completion.

Previous approaches with simple communication patterns

carry erroneous or incoherent agent actions, which can

lead to additional risks. To address these problems, we

propose Cooperative Tree Search (CoTS), a framework de-

signed to significantly improve collaborative planning and

task execution efficiency among embodied agents. CoTS

guides multi-agents to discuss long-term strategic plans

within a modified Monte Carlo tree, searching along LLM-

driven reward functions to provide a more thoughtful and

promising approach to cooperation. Another key feature of

our method is the introduction of a plan evaluation mod-

ule, which not only prevents agent action confusion caused

by frequent plan updates but also ensures plan updates

when the current plan becomes unsuitable. Experimental

results show that the proposed method performs excellently

in planning, communication, and collaboration on embod-

ied environments (CWAH and TDW-MAT), efficiently com-

pleting long-term, complex tasks and significantly outper-

forming existing methods.

1. Introduction

Embodied agents are increasingly capable of perceiving

and interacting with their environments like humans, au-

tonomously managing planning, decision-making, actions,

and execution tasks [23, 36]. Recent advances have gener-

ated substantial interest in these agents, especially for appli-

cations requiring complex task execution in dynamic envi-

ronments, such as robotic operations in warehouses or do-

mestic settings. In particular, collaborative task completion

among multiple agents enhances both efficiency and adapt-
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ability, especially in dynamic scenarios [5, 10]. However,

collaboration among embodied agents introduces signifi-

cant challenges: agents must not only perceive and under-

stand their environment but also communicate, share infor-

mation, divide tasks, and coordinate actions responsively.

For example, consider autonomous robots in a home re-

sponding to a request: “Bring me the iPad and apple, and

put the milk in the refrigerator.” Achieving this requires

multi-level coordination, including optimal search strate-

gies, task prioritization, and efficient movement planning.

Large language models (LLMs) have recently provided

embodied agents with advanced natural language under-

standing, dialogue, and reasoning abilities [1, 3, 38, 40].

These capabilities allow LLMs to decompose complex and

long-term tasks into a sequence of manageable sub-goals,

making LLM-driven agents a promising alternative to tra-

ditional reinforcement learning models [14, 34] which are

difficult to train and often generalize poorly [7, 21, 39].

However, enabling embodied agents to work together in

decentralized environments remains a significant and un-

derexplored challenge, as it requires long-term planning

and coherent decision-making to coordinate actions effi-

ciently. Early attempts at multi-agent collaboration, such

as CoELA [43] and RoCo [24], demonstrate progress but

also reveal limitations. For instance, as shown in Fig. 1 (b),

CoELA facilitates collaboration by sharing updates through

natural language when sub-tasks are completed, yet each

agent’s decision-making process remains independent, re-

sulting in suboptimal coordination. In contrast, as illus-

trated in Fig. 1 (c), RoCo develops multi-agent work plans

through agent discussions and environmental interactions.

However, RoCo relies on a single reasoning path, which is

susceptible to the randomness and unpredictability of LLM

outputs. This can lead to inefficient or incorrect planning,

particularly in applications requiring precision, where such

errors can have serious consequences.

Contributions. To address these limitations, we propose

Cooperative Tree Search (CoTS), a framework designed to

significantly improve collaborative planning and task exe-
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Figure 1. The task execution processes of CoELA, RoCo, and our CoTS. (1) In CoELA, agents update each other on sub-task completion

and individually determine their next actions without long-term strategic planning. (2) RoCo uses multi-round dialogues and summarizes

the plan at the end, but its single-dialogue chain can lead to suboptimal plans and even errors due to the randomness and unpredictability

of LLMs. (3) Within a modified Monte Carlo Tree Search framework, CoTS allows agents to evaluate multiple planning paths, enabling

them to collaboratively deliberate and identify the most effective course of action based on task progress and environmental context.

cution efficiency among embodied agents. Inspired by hu-

man decision-making, CoTS allows agents to search multi-

ple planning paths by combining exploration and backtrack-

ing, enabling them to collaboratively deliberate and identify

the most effective course of action based on task progress

and environmental context.

As illustrated in Fig. 1 (d), CoTS advances agent col-

laboration in embodied environments through two core in-

novations. First, we introduce a collaborative planning

module based on a modified Monte Carlo Tree Search

(MCTS) framework, which enables agents to explore mul-

tiple planning paths and select the most coherent and effi-

cient long-term plan. Unlike traditional MCTS which re-

lies on simulation-based rewards, CoTS incorporates a non-

simulated LLM-based reward function suited for high-cost

physical movement interactions in embodied environments.

In this way, CoTS transforms the traditional linear sequence

of action steps into a search process, exploring potential

paths within a shared reasoning and action space to develop

robust collaborative strategies. Second, CoTS features a

plan evaluation module, that actively monitors the relevance

and feasibility of the selected plan during execution. This

mechanism allows agents to adapt plans as needed, reducing

unnecessary disruptions from frequent plan updates while

still accommodating environmental changes.

Our experiments on two long-term multi-objective plan-

ning tasks — TDW-MAT [43] and C-WAH [8] — demon-

strate that CoTS significantly outperforms current state-of-

the-art methods, e.g., CoELA [43] and RoCo [24], in terms

of task completion rate and efficiency. These results high-

light the effectiveness and superiority of CoTS, underscor-

ing its potential for high-stakes applications that demand

reliable multi-agent collaboration.

2. Related Work

LLM-based Agents. Recent advances in LLMs have

unlocked near-human reasoning and planning capabilities

[1, 27, 37]. Researchers have leveraged LLMs as the

“brain” or controller of agents, expanding their perceptual

and action capacities through multimodal perception and

tool use [6, 25, 32, 38, 40, 45]. Multi-agent systems [16, 35]

show particular promise, enabling agents to collaborate on

planning, discussion, and decision-making—similar to how

humans solve complex problems in teams [26, 33]. Works

such as MetaGPT [13], CAMEL [19], and ChatDev [31]

decompose complex tasks into simpler, manageable sub-

tasks to reduce hallucinations and improve task-solving ca-

pabilities. However, embodied multi-agent systems [20, 44]

require advanced communication and face significant chal-

lenges in navigating a vast action search space in complex,

dynamic environments, especially for long-term tasks.

Embodied Multi-Agent Cooperation. Research on em-

bodied multi-agent systems is still emerging. Habitat [30]

explores agents’ social awareness, enabling adaptive assis-

tance strategies in collaboration. Co-NavGPT [41] uses

LLMs for multi-robot collaborative goal navigation, en-

coding environmental data to improve scene understanding.

Organized-LLM-Agents [11] reduces redundancy in multi-

agent collaboration through structured prompts, enhancing

coordination. CoELA [43] enables collaborative agents to

communicate and plan through natural language and chain-

of-thought processes, yet lacks strategic long-term plan-

ning. RoCo [24] and CaPo [22] advance multi-agent col-

laboration with high-level communication and path plan-

ning, but their single reasoning path often leads to subop-

timal plans and even errors. Although some existing work
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Figure 2. The framework of CoTS. Upon receiving a new task in the embodied environment, each embodied agent initially employs the

Perception Module to gather raw observational data, which is then stored in its Memory Module. In the collaborative planning module,

agents guide the exploration of collaborative plans toward more promising directions through the collaborative tree search. The explored

plans are retained within the memory module as a special ’extended memory’ and are periodically updated based on assessments from the

planning evaluation module. Finally, agents perform actions aligned with the collaborative plan and tasks.

on LLMs involves multi-branch reasoning [2, 17, 40, 42],

they are inadequate for complex embodied environments

and agent collaboration. Our goal is to develop embodied

agents capable of searching long-term strategic planning.

3. Preliminaries

Task Assumption. As introduced by previous work [9, 24],

multi-agent collaborative tasks can be viewed as a Markov

game, which is defined by a tuple (N ,S,A, P, r, γ), in

which N is the set of agents (e.g. Alice and Bob), S is the

state space, A =
∏n

i=1
Ai is the combination of all action

spaces, P : S × A × S → [0, 1] is the transition proba-

bility function, r : S × A → R is the reward score, and

γ ∈ [0, 1) is the discount factor. In the task, each agent

at time step t ∈ N obtains the information by perception

module from the embodied environment st ∈ S , chooses

and executes an action ait ∈ Ai from its available policy

πi(·|st). This will along with the actions of other agents,

constitutes a joint action at = (a1t , a
2
t , ..., a

n
t ) ∈ A derived

from the joint policy π(·|st) =
∏n

i=1
πi(·|st). Then agents

perceive a new state st+1 with probability P (st+1|st,at).
We seek to determine a collaborative plan that maximizes

the J(π) ≜ Es0,∞∼P,a0,∞∼π[
∑

∞

i=0
γiri]. For this paper,

the goal is to coordinate the distribution of sub-tasks among

agents so as to complete tasks more efficiently.

CoELA [43]. It contains five modules: 1) Perception, 2)

Memory, 3) Communication, 4) Planning and 5) Execution.

The Perception module leverages a trained Mask-RCNN

[12] to segment RGB images and detect objects and ob-

stacles, creating 3D point clouds from RGB-D data and

extracting essential high-level information like key object

states. The Memory module manages short-term and long-

term memory, with short-term memory capturing imme-

diate details such as semantic maps and agent states, and

long-term memory storing persistent information like task

descriptions. In the Communication module, CoELA re-

trieves relevant information from memory, transforming it

into template-based textual descriptions for agents to aid in

action selection. However, each agent plans independently,

with no unified action coordination. In the Planning and Ex-

ecution modules, CoELA retrieves agent-related informa-

tion from memory, generates potential actions for the LLM

to consider, and applies chain-of-thought [38] reasoning for

more in-depth decision-making. Each agent then executes

its chosen action accordingly.

4. Collaborative Tree Search for Multi-Agents

4.1. Overview of CoTS

Now we introduce an overview of our Collaborative Tree

Search (CoTS), which is designed for multi-agent coopera-

tion in embodied environments. As shown in Fig. 2, CoTS

contains four key modules: 1) Perception Module, 2) Mem-

ory Module, 3) Collaborative Planning Module, and 4) Plan

Parsing and Execution Module. This work primarily en-

hances CoELA in its planning by designing the Collabora-

tive Planning Module. The other three modules are largely

borrowed from CoELA and introduced in Sec. 3. Here we

briefly introduce our enhancements to CoEAL below.

Perception Module. Unlike CoELA, we introduce distance

as a key perceptual factor, leveraging fixed spatial layouts in

real-world settings to enhance agents’ room-based under-

standing and improve planning efficiency by using LLM to

access the moving distance of agents.
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Figure 3. Overview of the tree search in CoTS. Each node in the tree contains content generated by Alice and Bob. Alice generates

the collaborative plans and messages to Bob, while Bob generates messages to Alice and rewards for the plans. These rewards are used

for backpropagation to guide the tree search toward more promising collaborative plans. The figure also shows examples of three nodes,

illustrating the stepwise optimization of collaborative planning and the dialogue process between agents.

Memory Module. Compared with CoELA, CoTS intro-

duces ”extended memory” (Fig. 2) to manage collaboration

plans—information that needs to be retained for a moderate

period and updated periodically. This is because collabo-

ration plans must balance retention for a certain period and

timely updates when they become unsuitable for the current

embodied environment. This extended memory mimics the

medium-term storage of the human memory system, bridg-

ing short-term recall and long-term consolidation.

Collaborative Planning Module is the core of CoTS,

where MCTS is modified and employed to develop long-

term strategic collaboration plans. Inspired by human

problem-solving through iterative discussion and cooper-

ation, it avoids error accumulation caused by a single

path approach. This module represents the first integra-

tion of embodied agent collaboration with MCTS, enhanc-

ing agents’ capability to tackle complex, long-term tasks

through tree-based search and backtracking. Details of this

module are provided in Sec. 4.2.

Plan Parsing and Execution Module translates collabora-

tive plans into executable actions, enabling agents to com-

plete tasks in a coordinated manner. See details in Sec. 4.3.

Below we will delve deeper into two core modules, Col-

laborative Planning Module and Plan Parsing and Execution

Module. Additionally, we will highlight CoTS’s integration

of spatial awareness and extended memory to enhance over-

all functionality and efficiency.

4.2. Collaborative Planning Module

Our Collaborative Planning Module, central to our CoTS

framework, is designed to search for long-term, efficient

and coherent collaborative plans for multi-agent tasks in dy-

namic environments. It comprises two main sub-modules:

a collaborative tree search module for generating collabo-

rative plans (Sec. 4.2.1) and a plan evaluation module to

analyze when to update the plan (Sec. 4.2.2).

4.2.1. Monte Carlo Tree Search for Collaborative Plan

We adapt MCTS to convert multi-agent collaborative plan-

ning into a tree search, identifying an optimal pathway from

multiple reasoning paths for cohesive strategies. As shown

in Fig. 3, each node in this tree stores a proposed plan,

agent feedback, and a performance reward. In this setup,

one agent (like Alice) functions as the ”planner” to propose

plans, while other agents (like Bob) act as ”critics”. Alice

drafts several initial collaborative plans or extends existing

plan based on task goals and current task progress. Then

Bob evaluates them, considering factors like task allocation

and movement efficiency, to generate a reward for the cur-

rent plan. Once feedback is provided, each plan’s reward

is propagated back through the collaboration tree, strength-

ening successful strategies and adjusting future planning

pathways. Accordingly, they will select the most efficient

collaborative plan for further reflections and refinements.

As shown in Fig. 3, this process, including plan extension

(drafting), evaluation, backpropagation, and selection, will

repeat until agents explore all potential collaborative plans

and select the most promising one. In the following, for

these four steps, we will elaborate on each of them.

Selection Similar to traditional MCTS [4, 15], CoTS starts

from the root node and traverses down the tree by selecting

nodes with the highest UCT values. This process is repeated



until a leaf node is reached, and is illustrated in Fig. 3 where

we mark the selected nodes with gold cups. For UCT of

each node, it is computed as follows:

UCT(si) = V (si) + w
√

lnN(pi)/N(si), (1)

Where N(si) is visiting number of node si, V (si) is the

reward of the subtree rooted at si, w is the exploration co-

efficient, and pi is the parent node of si. After an episode,

backpropagation updates each node’s V (si) along the path:

V (si) =
V (si−1)·(N(si)−1)+r

N(si)
, where V (si−1) is the previ-

ous reward, and r is the reward used to update each V (si).
Expansion. Once a node is selected, we expand it by

sampling n new discussion paths, each building on the

plan (from “planner”, Alice) and suggestions (from “critic”,

Bob) in the parent node. This generates n new child nodes,

representing potential planning routes. The tree, along with

its nodes, is stored in an external long-term memory to re-

tain valuable information and facilitate consistent planning

across episodes.

Evaluation. Each newly created child node receives a re-

ward r to quantify the quality of the collaboration plan and

to guide the search algorithm towards the most promising

areas of the tree. Here CoTS incorporates a non-simulated

LLM-based reward function to estimate the reward r of a

plan in a node. In traditional MCTS, reward estimation re-

quires agents to execute their actions for receiving environ-

ment feedback, like completing a subtask, and thus is high-

cost. So CoTS introduces an LLM-based reward function

based on two components: (1) an allocation reward assess-

ing coherence and efficiency, and (2) a cost reward evalu-

ating the spatial movement cost of agents. To ensure con-

sistency, we standardize the evaluation criteria to provide

clear guidelines to minimize ambiguity. Each criterion is

scored on a scale of 1 to 5, with the final reward normalized

between 0 and 1. See examples in Appendix B.1.

Backpropagation. Each evaluation reward is propagated

back along the path to update node rewards, with formu-

las ensuring that parent nodes integrate the feedback, guid-

ing future selections. Specifically, the back-propagation up-

dates node rewards N(si) = N(si−1) + 1 and V (si) =
V (si−1)N(si−1)+r

N(si)
for each node s0, s1, . . . , sp along the

path from the root (initial state s0) to leaf (terminal state

sp). Accordingly these estimated rewards and visiting num-

ber are used in “Expansion” step for node selection, direct-

ing the search toward the most promising areas of the tree.

4.2.2. Collaborative Plan Evaluation and Adaptation

In this section, we will explain why we introduced the plan-

ning evaluation module (a sub-module in the collaborative

planning module, as shown in Fig. 2) and its function. The

collaborative plan provides high-level embodied agent ac-

tion guidance, but as the task is executed and agents act, the

embodied environment gradually changes (e.g. the agents’

positions, the agents’ progress, and the current status, etc.).

Therefore, the collaborative plan needs to be updated based

on the latest environmental information.

At this point, two scenarios arise: If the plan is updated

too slowly or not updated at all, the current plan becomes

outdated and cannot effectively guide the embodied agents

in executing tasks. However, in a multi-agent system, in-

stantly updating the plan with every progress can be in-

efficient and counterproductive. It may lead to excessive

queries to the LLM and environments. Furthermore, fre-

quent plan revisions may introduce conflicting strategies

due to minor environmental shifts, potentially disrupting

agent actions and lowering overall efficiency. This is il-

lustrated in Fig. 4 (c): if the updated plan conflicts with

the action that Bob is currently performing, it may interrupt

Bob’s action which even almost finishes the subtask.

To address this, we introduce a plan evaluation module

within CoTS to continuously evaluate the viability of the

current collaborative plan. When an agent makes progress,

the module determines if the existing plan remains effective

based on the status of task execution. If the evaluation met-

ric meets a defined threshold, indicating that the plan is still

viable, it is retained. Otherwise, CoTS will call the collab-

orative planning module to re-search and update the plan.

By focusing on the feasibility and long-term stability of the

plan rather than continuous recalibration, this module sup-

ports efficient, coherent collaboration, enabling agents to

complete tasks reliably in a dynamic environment.

4.3. Plan Parsing and Execution Module

To transform the collaborative plan generated in Sec. 4.2

into executable actions, CoTS incorporates an action pars-

ing module and a plan decomposition module. Action pars-

ing module bridges high-level planning with real-world ac-

tions, generating a set of feasible actions for each agent

based on current memory. For example, if an agent’s hands

are free, it will list objects that can be grabbed; if the agent

is in an unknown room, it will list movement options. This

module ensures that all sub-plans are formatted into natural

language and returned for subsequent process.

Plan decomposition module understands and breaks

down high-level tasks from the collaboration plan into spe-

cific and prioritized actions. The agent interprets the task ar-

rangement, selects actions from the parsed options that best

advance the collaborative plan’s goals, and finally translates

each chosen action into real-world execution.

5. Experiments

Benchmarks. Following CoELA [43], we evaluate the per-

formance of CoTS in two highly challenging embodied-

world multi-agent environments: (1) TDW-MAT (ThreeD

World Multi-Agent Transport) [8] extends the ThreeD

World Transport Challenge by simulating collaborative



Table 1. Quantitative results on TDW-MAT. Consistent with CoELA [43], TDW-MAT has two environment settings: with oracle perception

and without oracle perception. The results marked with * are from CoELA [43]. MAT uses central observation and oracle perception.

91+9.64% means the relative improvement when comparing with CoELA is 9.64%.

Transport Rate (%) Base Agent RL Agent LLM Agent

RHP* CoRHP* MAT*
GPT 3.5 GPT 4

CoELA RoCo CaPo CoTS(ours) CoELA* RoCo CaPo CoTS(ours)

TDW-MAT w/ Oracle Perception

Stuff(↑) 49 74 17 73 80+9.68% 84+15.07% 81+10.96% 83 85+2.41% 87+4.82% 91+9.64%

Food(↑) 52 76 13 72 74+2.78% 85+18.06% 83+15.28% 87 89+2.30% 90+3.45% 94+8.05%

Average(↑) 50 75 15 73 77+5.48% 84+15.07% 82+12.33% 85 87+2.35% 89+4.71% 93+9.41%

TDW-MAT w/o Oracle Perception

Stuff(↑) 36 54 - 39 47+20.51% 45+15.38% 50+28.21% 61 64+4.92% 64+4.92% 77+26.22%

Food(↑) 49 67 - 67 64
−4.48% 70+4.48% 67+0.00% 82 80

−2.44% 85+3.65% 88+7.32%

Average(↑) 43 61 - 52 55+5.77% 57+9.62% 59+13.46% 71 72+1.41% 74+4.23% 83+16.90%

Table 2. Quantitative results on C-WAH. LLM-based agents are

driven by GPT 4. Results marked with * are from CoELA [43].

Average Step Visual Obs(↓) Symbolic Obs(↓)

Base Agent
MHP* 141 111

LLM Agent

CoMHP* 103 75

CoELA* 92 57

RoCo 89+3.26% 57+0.00%

CaPo 83+9.78% 51+10.53%

CoTS(ours) 81+11.96% 49+14.04%

transportation tasks in a physics-based household environ-

ment. We select 24 tasks, split evenly between food and

stuff transportation. (2) C-WAH (Communicative Watch-

And-Help) [29] extends the Watch-And-Help challenge

within the VirtualHome-Social platform [28]. It features

five common household scenarios. Our test set includes 10

tasks, with two tasks per scenario. The objective is to com-

plete all sub-goals, prioritizing faster completion.

Evaluation Metrics. On TDW-MAT, transport rate is eval-

uated by the percentage of target objects successfully de-

livered to their designated locations within a 3,000-frame

timeframe. For C-WAH, efficiency is measured by the num-

ber of time steps needed to complete all assigned tasks,

where fewer steps indicate higher efficiency.

Baseline Methods. The baselines include three types of

embodied agents: (1) Base Agent: RHP [8] uses heuristic

rules for navigation and A* for path planning. MHP [18]

employs Monte Carlo Tree Search (MCTS) for high-level

planning coupled with regression planning for task execu-

tion (2) RL-Based Agent: MAT [39] is a multi-agent rein-

forcement learning framework, featuring a centralized de-

cision transformer that synthesizes actions from shared ob-

servations. (3) LLM-Based Agent: CoELA [43] is a lead-

ing collaboration framework for embodied agents that in-

tegrates the reasoning capabilities of LLMs. It facilitates

communication and interaction between agents through nat-

ural language. RoCo [24] and CaPo [22] are multi-agent

collaboration methods that enhance collaboration by gener-

ating coordinated plans through structured agent dialogues.

Setup. We conduct all experiments on an Intel Core i9-

10980XE CPU and an NVIDIA GeForce RTX 3090 GPU.

We utilize both GPT-4 and GPT-3.5-Turbo [1], configuring

them with a temperature setting of 0.7 and top-1 sampling

to produce outputs up to 512 tokens.

5.1. Main Results

CoTS Outperforms the Strong Baselines. Following the

experimental frameworks of CoELA [43] and RoCo [24],

we configure two-agent cooperation, excluding RHP. As

demonstrated in Table 1, CoTS achieves best performance

on the TDW-MAT task. Specifically, when powered by

GPT-4 within the Oracle Perception environment, CoTS

surpasses CoELA, achieving a 9.41% average relative im-

provement in task completion, and a 16.9% improvement in

the absence of Oracle Perception. The primary strength of

CoTS is its ability to generate superior long-term strategies

through collaborative tree search.

Conversely, CoELA focuses on short-term actions de-

rived from immediate information, which limits its strategic

depth and adaptability to future scenarios and environmen-

tal shifts. RoCo and CaPo are similar. Although they are

capable of developing plans, they rely on a single-branch

discussion method, which may result in suboptimal or inac-

curate strategies. Moreover, Their frequent plan revisions

can interfere with agent coordination. Therefore, while

RoCo and CaPo surpass CoELA, they are inferior to CoTS.

When driven by GPT-3.5, CaPo slightly outperforms CoTS

on some metrics. The main reason for this is that GPT-3.5

has weaker evaluation and scoring capabilities. However,

when powered by GPT-4, CoTS significantly outperforms

CaPo. Our findings underscore that multi-agent collabora-

tion generally surpasses single-agent strategies, exemplified

by RHP. The performance of reinforcement learning-based

MAT is poor, mainly because TDW-MAT is too difficult for

it with long time domain and sparse reward signals.

The performance of LLM-based agents primarily de-



Background: Bob was transporting 

objects to the bed, Alice found a 

bread in the living room<6000>

RoCo’s Plan: Bob goes to the living 

room <6000> to help Alice grasp the 

bread. 
Our plan: The current plan is still valid. 

Bob is close to the bedroom. He can

first deliver the objects in his hand to 

the bed, and then help Alice.

Bob

Alice

Transport

Move

Background: Alice and Bob appear in 

the same living room and now need to 

explore some rooms to find objects.

RoCo’s plan : Alice explore the current 

room. Bob explore the current room.

Our plan : Alice goes to the nearest room, 

Bedroom <2000>, while Bob explores the

current room. Exploring rooms separately 

would improve efficiency.

Explore

Move

Bob

AliceBob

Alice

Background: Alice is in living room

holding a container. Bob finds two 

target objects in living room<1000>.

CoELA’s plan : Alice goes to the 

living room to help Bob, because Alice

can take these objects. 
Our plan : Alice explores the current 

room, find objects, then transport them 

to the bedroom. Then go to the living 

room <1000>, no actions are wasted. 

(a) CoELA leads to short-sighted 
action plans that ignore precious 
action steps

(b) RoCo's single-chain dialogue 
leads to suboptimal collaboration 
plan

(c) Frequent plan updates may 
hinder completion of current 
actions

Move

T
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Figure 4. Some interesting example cases demonstrate that our CoTS achieves better collaboration than RoCo and CoELA. These scenes

are taken from the experiments in TDW-MAT.

Find an apple in

fridge 

Put a cupcake onto 

the coffee table 

Go to check 

kitchencabine

t

Go to explore

bedroom

There seems to be no plan. Both Alice 

and Bob are not holding anything. Bob

in bedroom and has found an container, 

while Alice is in the. A collaboration 

plan needs to be updated. Reward: 1

Plan Update Plan unchanged

Alice have found an apple in the fridge and 

Bob is holding a cupcake. Current progress

is consistent with the collaborative plan and 

future actions are outlined in the plan. There 

is no need to update the plan. Reward: 4

Figure 5. Plan Evaluation and Update. The plan evaluation module

gives a lower reward when it determines that the current plan needs

to be updated, and a higher reward when it believes the current

plan is still valid. The reward range is from 1 to 5.

pends on their reasoning abilities and the depth of em-

bedded world knowledge. Agents powered by GPT-4, as

demonstrated by CoTS, significantly surpass those based

on GPT-3.5, highlighting the advancements in LLM tech-

nologies and their impact on agent proficiency. As shown

in Table 2, CoTS achieves superior efficiency, improving by

11.96% and 14.04% over CoELA in Visual Obs and Sym-

bolic Obs settings, respectively. These results underscore

CoTS’s robust adaptability across various embodied envi-

ronments and its potential for real-world applications.

5.2. Qualitative Analysis

CoTS Can Develop Long-term Strategic Plans. Unlike

CoELA, which is adept at responding to immediate tasks

11

28

60

85

7

32

71

93

500 1000 2000 3000
0

20

40

60

80

100

T
ra

n
sp

rt
a
 R

a
te

 (
%

)

Time steps

 CoELA
 CoTS

Figure 6. Comparison of transportation rates for GPT-4-based

CoTS and CoELA at different time steps on TDW-MAT.

but falters in sustained coordination, CoTS excels in long-

term strategic planning. As illustrated in Fig. 4 (a), when

Bob discovers a new target that requires assistance, Alice,

under CoTS’s direction, continues to thoroughly explore her

current room before moving the item to the bed. This sys-

tematic approach not only supports Bob but also adheres to

an overarching collaborative strategy, optimizing both im-

mediate and future task alignments.

CoTS Generates More Optimal Collaboration Plans.

Unlike RoCo to generate plans sequentially through a

single-chain dialogue, CoTS makes more optimized collab-

oration plans. Due to the randomness of LLMs and the em-

bodied environment’s complexity, RoCo’s plans may some-

times be suboptimal. For example, in Fig. 4 (b), RoCo

instructs both Alice and Bob to explore their respective

rooms. However, they are currently in the same room, mak-

ing joint exploration redundant. CoTS effectively identifies

this and assigns Alice to explore the nearest room instead.
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Figure 7. Comparison of transportation rates with different

branching factors. More branching factors means more new nodes

are generated each time in the expansion phase.

CoTS Ensures Smooth Completion of Agent Actions. In

RoCo, new progress often prompt discussions and lead to

new plans that can override existing ones. As illustrated in

Fig. 4 (c), Bob, tasked with transporting items to the bed,

must halt his activity to help Alice following a revised plan.

Conversely, CoTS incorporates a plan evaluation module

that validates the feasibility of plans before any adjustments

are made. In Fig. 4 (c), CoTS allows Bob to finish transport-

ing before next action. This approach avoids chaotic agent

actions and ensures timely plan updates when necessary.

CoTS Dynamically Manages Collaborative Plans. As

shown in Fig. 5, the assessment module continuously evalu-

ates the viability of existing plans. It assigns a lower reward

(e.g. 1) if collaboration necessitates devising a new plan

or modifying an existing one, prompting agents to adapt

their strategies accordingly. Conversely, when the current

progress aligns with planned tasks and their distribution

among agents is deemed efficient, the module rewards this

alignment with a higher value (e.g. 4). This incentivizes

agents to persist with the established collaborative plan,

avoiding unnecessary replanning.

5.3. Ablation Study and Additional Analysis

The Core Modules of CoTS Have Important Impacts.

The Table 3 shows the ablation results of CoTS. To ex-

amine the impact of tree search, we modify it to a single-

branch structure, where agents can only communicate along

one path. The experimental results indicate a 5.38% relative

decrease in the average transportation rate, mainly because

the limited communication does not consistently yield cor-

rect conclusions and diverges from typical human discus-

sion patterns. Furthermore, eliminating the reward function

and plan update evaluation components from CoTS leads

to variable performance declines, highlighting the critical

roles these elements play in the system’s efficacy.

Analysis of Agent Collaboration Progress at Different

Time Steps. We analyze the transportation rates of CoELA

and CoTS on TDW-MAT at various time steps, as depicted

in Fig. 6. An interesting observation emerges at 500 steps,

where CoTS exhibits a lower performance compared to

Table 3. Effects of the reward function, collaboration tree search,

and plan evaluation module in GPT-4-driven CoTS on TDW-MAT.

Transport Rate Stuff(↑) Food(↑) Average(↑)

CoTS w/o Reward 87
−4.40% 90

−4.26% 89
−4.30%

CoTS w/o MCTS Plan 85
−6.59% 91

−3.19% 88
−5.38%

CoTS w/o E&U 88
−3.30% 92

−2.13% 90
−3.23%

CoTS 91 94 93

CoELA, attributed to CoTS’s strategy of prioritizing item

collection early to enhance transport capacity. However,

this initial disadvantage is counterbalanced by a signifi-

cant improvement at 2000 steps, where CoTS markedly sur-

passes CoELA. This shift underscores CoTS’s effectiveness

in optimizing agent collaboration for task execution.

Impact of Different Branching Factors on Results. Dur-

ing the expansion phase of MCTS, we define the number of

new candidate nodes generated at each step as the ”branch-

ing factors.” As shown in Fig. 7, increasing the number of

branching factors expands the selection space, leading to a

better plan. Adjusting the branching factor allows for a bal-

ance between performance and efficiency.

Besides, the human-agent collaboration and the cost of

CoTS are discussed in Appendix A.1 and Appendix A.2, re-

spectively. CoTS also demonstrates significant advantages.

6. Conclusions

This paper introduces CoTS, a collaborative framework that

leverages large language models with a modified Monte

Carlo tree search to enhance multi-agent task planning in

complex and dynamic environments. By enabling agents to

evaluate multiple potential plans and refine strategies based

on progress, CoTS significantly advances over prior meth-

ods like CoELA and RoCo. The addition of a plan feasi-

bility module ensures smooth task execution by adapting

plans only when necessary. Experimental results on multi-

objective tasks confirm CoTS’s superior performance.

Limitation. CoTS relies on LLMs’ reasoning abilities.

We find that GPT-4 surpasses GPT-3.5-turbo in instruction-

following and response quality, while GPT-3.5-turbo can be

verbose and occasionally inaccurate. Despite this, even for

GPT-3.5, CoTS improves agent collaboration through col-

laborative planning search in the collaboration tree.
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Collaborative Tree Search for Enhancing Embodied Multi-Agent Collaboration

Supplementary Material

The supplementary material is organized as follows:

• Appendix A: Additional Experiments

• Appendix B: Additional Details about CoTS

• Appendix C: Embodied Environments and Baselines

• Appendix D: Planning and Evaluating Examples

• Appendix E: Prompt Templates

A. Additional Experiments

A.1. Collaborating with Humans

Following CoELA, we evaluate human-agent cooperation

in C-WAH (symbolic observations). Since CoTS requires

one collaborator to act as a planner, this role can be chal-

lenging and time-consuming for humans in complex em-

bodied environments. However, LLMs excel in such tasks.

Therefore, in this experiment, Alice (the Planner) is con-

trolled by GPT-4, while Bob (the Reflector and Evaluator)

is a human. This setup leverages the reasoning capabili-

ties of the language model alongside human experience and

precise evaluation.

To assess efficiency, we measure the average number of

steps taken. Additionally, eight participants evaluate their

teammate based on three key criteria—communication ef-

fectiveness, helpfulness, and trust—using a 7-point Likert

scale. The results are summarized in the Table 4.

Table 4. Human experiments results.

Method Ave steps Comm Effectiveness Helpfulness Trust

CoELA 48 5.7 / 7 5.4 / 7 6.0 / 7

CoTS 43 6.3 / 7 6.1 / 7 6.4 / 7

Communication Effectiveness is evaluated based on the

following aspects: 1) Clarity of Information Transmission

– Whether the provided prompts or explanations are easy

to understand, and whether the language is accurate, con-

cise, and well-organized. 2) Understanding User Needs

– Whether the Agent can correctly interpret user instruc-

tions, questions, or intentions and provide appropriate re-

sponses. 3) Overall Interaction Experience – Whether the

conversation flows naturally and whether the communica-

tion frequency is reasonable. From the experimental results,

CoTS demonstrates better ”communication effectiveness”

mainly because it establishes a detailed long-term collabo-

ration plan, making communication more logical and per-

suasive while reducing unnecessary exchanges and improv-

ing overall communication efficiency.

Helpfulness measures whether the Agent can provide tar-

geted, highly feasible, and productive dialogue content, ef-

fectively reducing the user’s cognitive and reasoning bur-

den, thereby making task completion easier. This metric

focuses on the Agent’s actual contribution to user goals and

whether users perceive value from the interaction. Accord-

ing to the experimental results, CoTS is primarily respon-

sible for integrating large amounts of information and for-

mulating complex plans, requiring humans only to provide

feedback and evaluations, which significantly reduces the

user’s workload. Additionally, CoTS exhibits higher task

execution efficiency, making it easier for users to obtain as-

sistance and improve their productivity.

Trust assesses the degree to which participants trust the

Agent’s response, including whether the answers provided

are accurate and reliable, whether the decision-making pro-

cess is coherent and well-founded, and whether the infor-

mation is professional and specific. During the collabo-

ration process, users demonstrated a higher level of trust

in CoTS, mainly due to its proactive incorporation of hu-

man input during planning and its collaborative approach in

multi-round discussions to develop long-term plans. More-

over, because CoTS has well-defined functions for each ,

its responses are more professional and targeted, making it

easier for humans to accept and trust its decisions.

Overall, CoTS outperforms CoELA in communication

effectiveness, helpfulness, and trust. Experimental partici-

pants generally found CoTS to be more fluid in communi-

cation, more helpful, and more trustworthy. The efficiency

of experiments conducted with CoTS was also significantly

higher than with CoELA, further demonstrating CoTS’s po-

tential in the field of human-AI collaboration.

A.2. Cost Discussion

The primary costs for embodied agents come from com-

munication and movement, with movement costs often be-

ing higher, as current robots lack the agility of humans, es-

pecially in complex and large-scale environments like ur-

ban areas. However, through communication, CoTS en-

ables more effective collaborative planning and reduces er-

rors that could lead to critical outcomes in sensitive appli-

cations like healthcare or surgery. While this incurs added

communication costs (mainly from LLM inference), these

are essential to enhance system intelligence, and as LLM

technology advances, these costs are likely to diminish. Be-

sides, enhanced planning in CoTS minimizes redundant or

erroneous actions by agents, thereby reducing overall task

completion time.

Regarding communication cost, we compare CoTS with

the traditional tree search method ToT (DFS) on C-WAH

(symbolic obs), and the results are shown in Table 5. The

communication cost represents the average number of char-



Table 5. Cost of each plan update.

Method Ave steps Communication Cost Time Cost

CoT 57 - -

ToT 52 10568 characters 32.4s

CoTS 49 7923 characters 26.8s

acters consumed per round of plan updates. Results show

that 1) ToT and CoTS outperform CoT because of their

plan search and exploration, but are more costly. 2) CoTS

surpasses ToT by 5.8% relative improvement and a big ef-

ficiency improvement including a 17% reduction in time

cost. 3) Unlike CoTS, ToT lacks selection and backpropa-

gation steps, weakening its value evaluation ability, increas-

ing exploration costs and consuming more memory due to

maintaining more nodes. In contrast, CoTS ensures pre-

cise long-term planning, minimizing errors and redundant

actions, which ultimately reduces overall costs.

B. Additional Details about CoTS

B.1. Plan Reward Based on LLMs

In the Collaboration Tree Search Module and Plan Evalua-

tion Module of CoTS, assessments based on large language

models (LLMs) are required to quantify rewards for collab-

oration plans. (1) In the tree search, the evaluation aims to

assign a reward to each newly generated node, guiding the

tree toward exploring more promising directions. (2) The

evaluation module assesses the viability of current plans

based on the progress and actions of embodied agents. If

a plan remains viable, it is retained; otherwise, a new action

plan is sought.

Utilizing LLMs to assess collaborative plans leverages

their formidable reasoning capabilities and comprehensive

world knowledge. In the context of Collaborative Tree

Search, LLM-based evaluation bypasses the need for intri-

cate simulations by directly providing reward values within

the Monte Carlo tree, offering distinct advantages for em-

bodied environments. However, the straightforward appli-

cation of LLMs for evaluating collaboration plans often

yields outcomes that are vague and exhibit a significant lack

of consistency with human subjective judgments, marked

by considerable randomness.

Specifically, we enhance our prompts with labels to re-

fine the assessment process. For example, here we present

three different prompt templates in the planning evaluation

module. The label-enhanced version is applied to the plan

evaluation module in CoTS (as shown in Fig. 8). If the final

reward exceeds the set threshold (e.g., 3), there is no need

to update the plan.

Basic Version. Please analyze whether the current collab-

oration plan requires immediate adjustments. If the current

plan is satisfactory, respond with ”satisfied”; otherwise, re-

spond with ”unsatisfied.”

Reward Version. Please analyze whether the current col-

laboration plan requires immediate adjustments and assign

a reward. The higher the reward, the better the current plan

and the less it needs updating. The reward should be an

integer between 1 and 5.

Our Label Enhanced Version in Plan Evaluation. Please

analyze whether the current collaboration plan requires im-

mediate adjustments. Your response should include both

your reasoning and a reward. The reward should be as-

signed based on the following criteria: Plan Reward: [the

reward between 0 and 5: 1, The current plan is completely

unreasonable and needs to be revised 2, The current plan re-

quires significant adjustments 3, The current plan needs im-

provement, its core structure is sound, though details are un-

clear 4, The current plan requires only minor adjustments 5,

The current plan is fully reasonable and needs no changes.

Only output the reward.]

The evaluation of plans in collaborative tree search fol-

lows a similar pattern. It assesses the rationality of collabo-

rative plans by considering the allocation of agent actions

and whether the action distances between agents are ac-

counted for. After evaluation, the rewards from these two

aspects are aggregated and normalized to a range between 0

and 1, serving as the final reward for the node.

Dis Reward. [the reward between 0 and 5: 1, No consid-

eration of distance 2, Minimal consideration of distance,

overlooking key factors 3, Distance is considered but not

entirely accurate 4, Distance is sufficiently considered, with

only minor oversights 5, Comprehensive and accurate con-

sideration of distance. Only output the.]

Task Reward. [the reward between 0 and 5: 1, No consid-

eration of work distribution between Alice and Bob 2, Mini-

mal consideration of work distribution, leading to unreason-

able allocation 3, Work distribution is considered but not en-

tirely accurate 4, Work distribution is reasonable, with only

minor oversights 5, Work distribution is highly effective,

making full use of Alice and Bob’s abilities. Only output

the reward.]

B.2. Monte Carlo Tree Search

MCTS is a technique for identifying optimal decisions

within a defined decision space by randomly sampling and

constructing a search tree based on these outcomes. It has

profoundly influenced artificial intelligence (AI), particu-

larly in game strategies and planning challenges. Monte

Carlo trees are constructed incrementally and asymmetri-

cally, with each node in the tree representing a specific

state. During each iteration of the algorithm, the child

state with the highest UCT (Upper Confidence Bound for

Trees) value is selected for further expansion, balancing

exploration (searching under-sampled areas) and exploita-

tion (focusing on promising areas). Upon the conclusion of



Bob

Alice

[the reward between 0 and 5: 1, The current plan is completely

unreasonable and needs to be revised 2, The current plan requires

significant adjustments 3, The current plan needs improvement, its core

structure is sound, though details are unclear 4, The current plan requires

only minor adjustments 5, The current plan is fully reasonable and needs

no changes. Only output the reward.]

LLM Output: 3

Input: [Goal] [Current plan] [Dialogue history] [Previous action]

[Progress desc] Please help me analyze whether the current collaboration

plan needs to be adjusted immediately. Your response needs to include

your thought process and rewarding.

Figure 8. An example of using LLMs to assess whether the collaboration plan need to be updated.

Figure 9. Monte Carlo Tree Search [4].

an episode, backpropagation is performed,as illustrated in

Fig. 9. MCTS consists of four essential stages:

(1) Selection: Starting from the root node, the algorithm

identifies the most promising node according to the tree pol-

icy, continuing this process until a leaf node is reached.

(2) Expansion: At the selected leaf node, if it is not a ter-

minal state, new child nodes are added to represent potential

future states.

(3) Simulation: From the newly added nodes, the algo-

rithm conducts random simulations until reaching a termi-

nal state, then evaluates the node’s potential based on the

outcomes.

(4) Backpropagation: Simulation results are propagated

back to the root, updating the scores of all visited nodes

along the way.

The effectiveness of MCTS depends heavily on its ability

to balance exploring unknown areas with exploiting known

information, making it particularly valuable in domains re-

quiring precise and adaptive decision-making.

C. Supplementary Introduction to Embodied

Environments and Contrastive Methods

C.1. Embodied Environments.

Following CoELA [43], this paper considers two extremely

challenging embodied-world multi-agent environments to

test the performance of EMCT, including a subset of 24

tasks in TDW-MAT and a subset of 10 tasks in C-WAH.

1) TDW-MAT (ThreeD World Multi-Agent Trans-

port), an extension of the ThreeD World Transport Chal-

lenge, TDW-MAT simulates collaborative transportation

tasks in a physics-enabled household environment, built on

the TDW platform. In this environment, agents must ex-

plore a house to locate dispersed objects, pick them up, and

deliver them to designated locations. Each agent can carry

only one item per hand, but they can strategically use con-

tainers to enhance transportation efficiency.

This study selects 24 representative subtasks, evenly split

between food transportation (12 tasks) and item transporta-

tion (12 tasks). Each subtask environment contains 10 tar-

get objects and 2–5 containers, with a maximum duration

of 3,000 action frames. Agents are tasked with transport-

ing as many target objects as possible to the goal position,

utilizing containers as tools. While a container can hold up

to three objects, an agent without a container is limited to

carrying two objects at a time.

Agents retain access to their ego-centric visual observa-

tions and action spaces throughout the tasks. Communi-

cation among agents, mediated by the LLM, occurs exclu-

sively through natural language, leveraging the LLM’s ad-

vanced reasoning and comprehension capabilities.

The food-transporting task involves six types of targets

(apple, banana, orange, bread, loaf bread, and burger) and

three types of containers (bowl, plate, and tea tray). In

contrast, the object-transporting task includes six different

targets (calculator, mouse, pen, lighter, purse, and iPhone)



with three container types (plastic basket, wooden basket,

and wicker basket). In each task, there are 10 target ob-

jects and 2 to 5 containers in total. Objects are distributed

across four types of rooms—living room, office, kitchen,

and bedroom—arranged in alignment with common-sense

placement.

Observation Space The embodied agent primarily receives

an egocentric RGB image and a depth image, along with

several auxiliary observations. The observation space de-

tails are as follows:

• RGB Image: An egocentric image captured by a

forward-facing camera, with a resolution of 512 × 512
and a 90-degree field of view.

• Depth Image: A depth map captured using the same

camera parameters as the RGB image.

• Oracle Perception (optional): A color-mapped image

where each object ID corresponds to a unique color, using

the same intrinsic camera parameters as the RGB image.

• Agent Position and Rotation: The agent’s position and

orientation within the simulated environment.

• Held Objects: Information about objects currently in the

agent’s possession.

• Opponent Held Objects: Enumerates the objects held by

another agent, provided that this agent is visible.

• Messages: Communications exchanged among agents.

Action Space In TDW-MAT, agents can perform seven

types of actions for environmental interaction or inter-agent

communication. Each action spans multiple frames, with

specifics listed below:

• Move Forward: Advances the agent by 0.5 meters.

• Turn Left: Rotates the agent 15 degrees to the left.

• Turn Right: Rotates the agent 15 degrees to the right.

• Grasp: Allows the agent to grasp an object if it is within

close proximity. The object can be a target or container.

• Put In: Enables the agent to place a target object into

a container, provided the agent is holding the target and

container simultaneously.

• Drop: Releases any objects held by the agent.

• Send Message: Transmits a message to other agents, with

a limit of 500 characters per frame.

We compile a comprehensive Action List encompass-

ing all available actions relevant to the current state, pro-

viding LLMs with a structured framework for action selec-

tion. These selectable actions can be conveniently executed

by embodied agents. For example, the TDW-MAT (Three-

Dimensional World Multi-Agent Task) includes the follow-

ing sub-plans:

• explore current room

• go to the xx room

• go grasp the xxx (target object or container)

• put holding objects into the holding container

• transport holding objects to the bed

2) C-WAH (Communicative Watch-And-Help) builds

upon the Watch-And-Help challenge and is implemented on

the VirtualHome-Social multi-agent simulation platform,

introducing inter-agent communication. The environment

encompasses five common household scenarios: afternoon

tea preparation, dish washing, meal preparation, grocery or-

ganization, and table setting. Each task comprises multiple

subgoals defined by predicates, such as ”ON/IN(x,y)” de-

noting the placement of object x on/in location y. Detailed

task descriptions and subgoal listings are provided in Table

6. Our test set consists of 10 tasks, with two tasks selected

from each of the five scenario types. The task goal is to

meet all given sub-goals within 250 time steps, the faster

the better.

C-WAH encompasses a diverse range of household

tasks, each with specific objectives: preparing afternoon

tea, dishwashing, meal preparation, grocery storing, and

dinner table arrangement.

Objective. Agents are required to complete all specified

subgoals within a 250-timestep limit. Tasks consist of three

to five subgoals, challenging agents to demonstrate effective

strategic planning and inter-agent communication.

Observation Space. CWAH encompasses two modali-

ties: Symbolic Observation and Visual Observation. In the

Symbolic Observation mode, aligned with the setup in the

foundational Watch-And-Help challenge, an agent accesses

extensive object-related data within its vicinity, encompass-

ing attributes such as location, status, name, and relational

context. In contrast, Visual Observation permits agents to

capture egocentric RGB and depth visuals, alongside sup-

plementary observational data. Specifics of the observation

space are as follows:

• RGB Image: Captured through a forward-oriented cam-

era, presenting a resolution of 256 × 512 and a 60-degree

viewing angle.

• Depth Image: Utilizes the same intrinsic parameters as

the RGB camera to provide depth cues.

• Oracle Perception: This visualization assigns unique

colors to each object identifier, consistent with the RGB

camera’s intrinsic settings.

• Agent Position: Reflects the agent’s location within the

simulated environment.

• Messages: Includes all communications disseminated by

the agents.

Action Space. Expanding on the established Watch-

And-Help Challenge, the action repertoire includes a novel

messaging capability. Enumerated actions are:

• Walk Towards: Navigate towards an object or a different

room.

• Turn Left: Execute a 30-degree left turn.

• Turn Right: Execute a 30-degree right turn.

• Grasp: Ability to grasp an object, contingent on proxim-

ity.

• Open: Capability to open a nearby closed container.



Table 6. Task description in C-WAH. The tasks are divided into five types, each containing several predicates.

Task Name Predicate Set

Prepare afternoon tea ON(cupcake,coffeetable), ON(pudding,coffeetable),

ON(apple,coffeetable), ON(juice,coffeetable), ON(wine,coffeetable)

Wash dishes IN(plate,dishwasher), IN(fork,dishwasher)

Prepare a meal ON(coffeepot,dinnertable), ON(cupcake,dinnertable),

ON(pancake,dinnertable), ON(pudding,dinnertable),

ON(apple,dinnertable), ON(juice,dinnertable), ON(wine,dinnertable)

Put groceries IN(cupcake,fridge), IN(pancake,fridge),

IN(pudding,fridge), IN(apple,fridge), IN(juice,fridge),

IN(wine,fridge)

Set up a dinner table ON(plate,dinnertable), ON(fork,dinnertable)

• Close: Ability to close an open container when in prox-

imity.

• Put: Place objects into an open container or onto a sur-

face if nearby.

• Send Message: Transmit a message to peers, limited to

500 characters per instance.

C.2. Baselines

Here we introduce in detail the baseline methods included

in the experiment:

1) RHP (Rule-based Hierarchical Planner) [8], which

builds upon the existing robust baseline from the ThreeD-

World traffic challenge. RHP introduces a Rule-Based Hi-

erarchical Planning framework enhanced by a Frontier Ex-

ploration technique. It consists of a rule-driven high-level

planner that selects among multiple strategic options based

on predefined rules. Navigation is handled by an A*-based

pathfinding planner, utilizing both occupancy and semantic

maps that are continuously updated based on visual inputs.

2) MHP (MCTS-based Hierarchical Planner) [18] ,

which represents the strongest baseline in the Watch-and-

Help Challenge. It features a Hierarchical Planner com-

bining a high-level planner powered by Monte Carlo Tree

Search (MCTS) with a low-level planner based on Regres-

sion Planning (RP). This Modular Hierarchical Planner dy-

namically infers other agents’ intentions and adjusts its sub-

goals accordingly, based on their observed actions.

3) MAT (Multi-Agent Transformer) [39], which is a

multi-agent reinforcement learning model. We follows the

MAT model trained in CoELA. It conceptualizes MARL as

a sequence modeling challenge, employing a centralized de-

cision transformer to orchestrate action generation. The in-

put for the MAT is bifurcated. The primary segment encom-

passes a top-down semantic map of dimensions (12, 24),
derived from oracle perception. The secondary input seg-

ment incorporates agent-specific information, such as con-

tainer possession status and the count of held objects.

4) CoELA (Cooperative Embodied Language Agent)

[43] is an advanced collaborative embodied agent that

seamlessly integrates perception, memory, and execution

for planning, communication, and collaboration. By har-

nessing the vast world knowledge and superior reasoning

capabilities of LLMs, along with their expertise in natural

language processing, CoELA effectively coordinates with

other agents to tackle complex, real-world tasks.

5) RoCo (Dialectic Multi-Robot Collaboration) [24] is

an embodied collaborative agent that utilizes LLMs for both

high-level communication and low-level path planning. It

facilitates agent collaboration through natural language dia-

logues. Using multi-round interactions, agents share mutual

information and provide feedback. We implement RoCo in

TDW-MAT and CWAH environments, where agents deter-

mine a unified collaboration plan through dialogue. Based

on this plan, agents take actions, and any new progress trig-

gers further discussions to refine the plan.

6) CaPo (Cooperative Plan Optimization) [22] is simi-

lar to RoCo, as both discuss cooperative plans through di-

alogue before executing them. CaPo consists of two key

phases: meta-plan generation and meta-plan updating. Dur-

ing the meta-plan generation phase, agents exchange infor-

mation to determine the plan, while in the meta-plan updat-

ing phase, the plan is revised when new items are discovered

or sub-tasks are completed.

D. Examples

In this section, we present several examples of CoTS in ex-

periments. First, Fig. 10 provides detailed node informa-

tion for a specific path within the collaborative tree. Then,

Fig. 11 presents two concrete examples from the plan eval-

uation module, representing cases where the current plan

needs to be updated and where it does not.

E. Prompt Templates

We have listed the following templates: Alice Prompt

(Fig. 12), Bob Prompt (Fig. 13), Plan Evaluation Prompt

(Fig. 14), and Plan Parsing Prompt (Fig. 15).



Message to Bob: Hi Bob, I am currently in <Livingroom> (4000) where I found a <mouse> (9068700) which I plan to

grasp. As I am not aware of your location or progress, please let me know if you have any suggestions or find any target 

objects or containers. Let's focus on exploring the rooms we are currently in and grasp any found target objects.

Message to Alice: Hi Alice, I am currently in the <Livingroom> (4000) and have found an <iphone> (14360913). It would 

be more efficient if I continue to explore the <Livingroom> (4000) while you explore a new room. Let's avoid exploring 

the same room together and utilize our abilities more efficiently. Can we adjust the plan accordingly?Reward: 0.4

Plan from Alice: Step 1: Alice grasps the <mouse> (9068700). Bob explore his current room. Step 2: Alice explore the 

<Livingroom> (2000). If they find any target items, transport them to the bed.

Task: transport 2 iphones, 2 purses, 2 mouses, 2 lighters, 1 pen, 1 calculator to the bed.

The Process in Each Node: Alice makes plans, Bob provides suggestions and rewards.

Message to Bob: Hi Bob, thanks for the update. I will now shift to the <Bedroom> (8000) to avoid duplication of our 

efforts. Please continue exploring <Livingroom> (4000) and grasp the <iphone> (14360913) you found. Let's keep each

other updated on our progress.

Message to Alice: Hi Alice, I think it would be more efficient to split up and explore different rooms. While I continue to 

explore the <Livingroom> (4000) and retrieve the <iphone> (14360913), you could head to the nearest room, the

<Livingroom> (2000), to explore and look for more target objects. I suggest you grasp the <mouse> (9068700) in your 

current room before moving to <Livingroom> (2000). This way, we can cover more ground and find the target objects 

more quickly? Reward: 0.7

Plan from Alice: Step 1: Alice moves to the <Bedroom> (8000). Bob grasps the <iphone> (14360913). Step 2: Alice 

explore the <Bedroom> (8000). Bob explores the <Livingroom> (4000). Step 3: If they find any target items, transport

them to the bed.

Message to Bob: Hi Bob, I agree with you. I will move to the <Livingroom> (2000) to explore while you continue in the 

<Livingroom> (4000). This should help us cover more ground quickly. Please keep me updated on your progress.

Message to Alice: Hi Alice, your plan looks good. I will grasp the <iphone> (14360913) in my current room and continue

exploring for other target objects or containers. If I find another object or container, I will grasp it and transport to thebed 

if I am holding two objects. Reward: 0.9

Plan from Alice: Step 1: Alice grasps the <mouse> (9068700). Bob grasps the <iphone> (14360913).Step 2: Alice

moves to the <Livingroom> (2000). Bob explores the <Livingroom> (4000).Step 3: Alice explores the <Livingroom> 

(2000). If they find any target items, transport them to the bed.

Figure 10. An example of node information in a path of the collaboration tree, selected from the experiment on TDW-MAT.



Plan Evaluation Reasoning

According to the latest progress, Alice and Bob are following the action plan. Alice has found the target object <orange> 

(14249767) and containers <tea_tray> (16224318), <plate> (1457820) in the <Livingroom> (4000) as planned. Bob is in 

the <Kitchen> (5000) and exploring. As per the plan, Alice needs to grasp the <orange> and one container, put the 

<orange> into the container, and then transport them to the bed. Bob is supposed to continue exploring the Kitchen and

grasp target objects if found. No new target objects have been found by Bob and Alice is yet to execute the planned action. 

Therefore, there is no need to change the action plan immediately. Reward: [5].

Current Plan

Step 1: Alice go grasp <orange> (14249767) and the container <tea_tray> (16224318). Bob continues to explore the 

Kitchen (5000).

Step 2: Alice put <orange> (14249767) into the container <tea_tray> (16224318). If Bob finds any target objects in the

Kitchen (5000), he should go grasp up to two of them.

Step 3: Alice transport the container <tea_tray> (16224318) with the <orange> to the bed. If Bob is holding any target 

objects, he should transport them to the bed. If not, Bob should continue to explore the Kitchen (5000).

An Example of the Current Plan That Do Not Needs Updating

Plan Evaluation Reasoning

According to the latest progress, Alice is in the Bedroom (6000) and has found a loaf of bread (13469629), which is one of 

the target objects, but she hasn't acted to grasp it yet. Meanwhile, Bob is in the Livingroom (3000) and has found an orange 

(7175626), a target object, but he hasn't acted to grasp it either. The current action plan is for Alice to proceed to the

Kitchen (2000) and Bob to grasp the orange (7175626). However, since Alice has already found a loaf of bread (13469629) 

in Bedroom (6000), it would be more efficient for her to grasp that first before moving to another room. Similarly, Bob 

should also act to grasp the orange (7175626) he has found before continuing to explore. Therefore, the current action plan 

could be improved to be more efficient. Reward: [2].

Current Plan

Step 1: Alice go to the <Kitchen> (2000), Bob continues to explore the <Livingroom> (3000).

Step 2: Alice explore the <Kitchen> (2000), Bob go grasp <orange> (7175626).

Step 3: Alice go grasp up to two objects if found, Bob transport holding object to the bed.

An Example of the Current Plan That Needs Updating

Figure 11. Examples in the plan evaluation module.



I am Alice. My teammate Bob and I want to transport as many target objects as possible to the bed with the help of 

containers within 3000 steps. Remember Alice or Bob each can hold two things at a time and the 2 objects can be 

objects or containers. Alice or Bob can grasp containers and put objects into them to hold more objects at a time.

Assume Alice is an expert in designing plan outlines. Given our shared goal, previous plan, dialogue history, latest 

progress, Bob's suggestion,  please help me generate/refine the global plan for Bob and me during task execution, 

guiding us to achieve the goal collaboratively as soon as possible. Note that a container can hold three objects and will 

be lost once transported to the bed. I can only place objects into a container I am holding after grasping it. All objects

are denoted as  <name>(id), such as <table> (712). Actions take several steps to complete. Note that it may be costly 

to go to another room or transport to the bed, use these actions sparingly. 

The generated collaboration plan should strictly meet following requirements:

1. You should make full use of the agent's transport capabilities (up to two objects or containers per agent) to transport 

as much as possible efficiently. The collaboration plan should reasonably arrange the division of action between Alice 

and Bob in order to achieve the goal as soon as possible. Please be as detailed as possible in assigning actions to each 

agent, specific to a room or item.

2. Please keep your reasoning process, but the final collaboration plan should be brief, reliable, authentic, and 

consistent with the latest progress of Alice and Bob. Don’t make random and meaningless plans.

3. There are only 5 allowed actions you can use to construct the collaboration plan. 1) ‘go to’: move to a specified 

room. 2) ’explore’: explore a room for underlying target objects. 3) ‘ go grasp’: go to grasp a specified target object. 4) 

‘put’: Place an object into a specified container. 5) ’transport’: Transport holding objects or containers to the bed and 

drop them on the bed.

4. The collaboration plan should be detailed to each Agent. The collaboration plan only needs to consider three steps 

at most at current time. When there is not much known information or content to be planned, thecollaboration plan

can have only one or two steps. The collaboration plan must be structured strictly in the format: {Action Plan: Step 1: 

Alice xxx, Bob xxx; Step 2: Alice xxx, Bob xxx; Step 3: Alice xxx, Bob xxx}. 'xxx' represents one or multiple 

allowed actions.

5. In order to let Bob know about Alice's situation, you need to generate a short message to Bob. The message has to

be concise, reliable, and helpful for assisting Bob and Alice to make an efficient and consistent collaboration plan, and 

transport as many objects to the bed as possible. Don’t generate repetitive messages.

6. Alice and Bob act separately and can only exchange information and they cannot exchange items.

Here is an example for Alice:

{Goal: [Transport 2 oranges, 3 apples, 1 banana, 3 breads, 1 burger to the bed.]

Reasoning: [According to Bob's suggestions and progress, the current plan is partially reasonable and needs minor 

adjustments. Bob found <orange> (5345043) and <banana> (6381322) in <Livingroom> (4000), but he can't take

more things in his hand. He needs to transport them to the bed first. Alice currently is not far from <Livingroom> 

(4000), so Alice can go to <Livingroom> (4000) to get <orange> (5345043) and <banana> (6381322).]

Collaboration plan: [Step 1: Alice go to the  <Livingroom> (4000). Bob transport holding objects <bread> (547795) 

and <banana> (521494) to the bed and drop them on the bed.

Step 2: Alice go grasp <orange> (5345043) and <banana> (6381322). Bob goes to the <Kitchen> (5000) to explore.

Step 3: Alice transports holding objects to the bed. If any target objects or containers are found by Bob,  Bob go grasp 

objects.]

Message: [Hi Bob, I have received your message and will adjust ourcollaboration plan. You continue to transport the

target items in your hand to the bed. I will transport the <orange> (5345043) and <banana> (6381322) in 

<Livingroom> (4000) you found. Do you have any new suggestions for the updated plan?]

Following are provided information for Alice:

Goal: $GOAL$

Previous Collaboration Plan: $PREVIOUS_PLAN$

Dialogue History:  $DIALOGUE_HISTORY$

Alice's Progress: $ALICE_PROGRESS$, it's need to consider Alice's latest action progress.

Think step by step, and generate the response:

Figure 12. Alice Prompt.



I am Bob. My teammate Alice and I want to transport as many target objects as possible to the bed with the help of 

containers within 3000 steps.  Remember Alice or Bob can hold two things at a time, and they can be objects or 

containers. Alice or Bob can grasp containers and put objects into them to hold more objects at a time.

Because Alice may not understand Bob's current progress and information, and may not consider the plan 

comprehensively and perfectly, which wastes our action time. Given our shared goal, collaboration plan, dialogue 

history, progress, and my previous actions, please help me analyze and reward Alice's proposed collaboration plan, 

point out the shortcomings of Alice's plan and reflect on it and finally generate a message to send to Alice, at the

beginning of the message, I should first explain my findings. Alice and Bob act separately and they cannot exchange 

items. It may be costly to go to another room or transport to the bed, use these actions sparingly. 

The content Bob generate mainly consists of two parts: reasoning and message sent to Alice. Please strictly follow the

following format:

Reasoning: [the reasoning process, analyze the unreasonableness of the current plan and consider how to make it more 

efficient]

Dis_Reward: [the reward between 0 and 5: 1, No consideration of distance 2, Minimal consideration of distance,

overlooking key factors 3, Distance is considered but not entirely accurate 4, Distance is sufficiently considered, with 

only minor oversights 5, Comprehensive and accurate consideration of distance. Only output the reward.]

Task_Reward: [the reward between 0 and 5: 1, No consideration of work distribution between Alice and Bob 2, 

Minimal consideration of work distribution, leading to unreasonable allocation 3, Work distribution is considered but

not entirely accurate 4, Work distribution is reasonable, with only minor oversights 5, Work distribution is highly 

effective, making full use of Alice and Bob's abilities. Only output the reward.]

Message: [the message sent to Alice, you need to first tell Alice about your findings]

Here is an example for your reference: :

Reasoning: [In the current plan, Alice may not know our progress, so some of Bob's plans are vague, which needs to be 

improved. In addition, it is a waste of time for Alice and Bob to explore the same room together.]

Dis_Reward: [4]

Task_Reward: [2]

Message: [Hi, Alice, I dont find any objects and we are in the same room,  it is not efficient for us to explore the same 

room together. Your plan needs to be adjusted and describe my actions as detailed as possible.]

The following is the information of Bob currently:

Bob's Previous Action: $ACTION_HISTORY$

Bob's Progress: $BOB_PROGRESS$, it's need to consider Bob's latest progress and the distance is a dimensionless 

relative measure.

The following is the relevant information when Alice is planning her collaboration plan, which can be used as a

reference for Bob:

User: {user_input}\n

Alice's response: {candidate_content}

Think step by step, and generate the content sent to Alice:

Figure 13. Bob Prompt.



I am Bob. My teammate Alice and I want to transport as many target objects as possible to the bed with the help of 

containers within 3000 steps. Important: Alice or Bob can hold two things at a time, and they can be objects or

containers. I can grasp containers and put objects into them to hold more objects at a time. Note that a container can 

contain three objects, and will be lost once transported to the bed. I can only put objects into the container I hold after 

grasping it. All objects are denoted as <name> (id), such as <table> (712). Actions take several steps to finish.

Before, Alice has generated an collaboration plan based on our progress and discussion to coordinate Alice and Bob to

complete the task efficiently. Now some steps have passed since the last discussion of the collaboration plan, given our 

shared goal, collaboration plan, dialogue history, progress, and our previous actions, please help me analyze whether the 

current collaboration plan needs to be adjusted. Please note that the action progress can only reflect whether the action 

has been completed, but not whether the action is being taken.

Your response needs to include your thought process and scoring. Scoring is mainly based on the following criteria:

PA_Reward: [the reward between 0 and 5: 1, The current plan is completely unreasonable and needs to be revised 2, 

The current plan requires significant adjustments 3, The current plan needs improvement, its core structure is sound,

though details are unclear 4, The current plan requires only minor adjustments 5, The current plan is fully reasonable 

and needs no changes. Only output the reward.]

Here are two examples for you:

Reasoning: According to the latest progress, There is currently no plan to execute, so a plan needs to be generated.

Plan_Reward: [1]

Reasoning: According to the latest progress, Bob and Alice are both acting according to plan. Alice is in the process of 

taking action and Bob found new target items <ipod> (2189332) in the room <Office> (3000), which was not 

considered in the previous collaboration plan. We should update our collaboration plan to take them into account.

Plan_Reward: [3]

Following are provided information for you:

Goal: $GOAL$

Collaboration Plan: $ACTION_PLAN$

Dialogue History:  $DIALOGUE_HISTORY$

Previous Action: $ACTION_HISTORY$

Alice and Bob’s Progress Desc: $PROGRESS$, it's important to consider Alice and Bob's latest action progress and the

distance is a dimensionless relative measure.

Think step by step, and generate the message:

Figure 14. Plan Evaluation Prompt.



I am $AGENT_NAME$. My teammate $OPP_NAME$ and I want to transport as many target objects as possible to the 

bed with the help of containers within 3000 steps. I can hold two things at a time, and they can be objects or containers.

I can grasp containers and put objects into them to hold more objects at a time. All objects and rooms are denoted as  

<name>(id), <Living room> (3000) and <Living room> (1000) are not the same room.

Assume that you are an expert decision maker. Given our shared goal, collaboration plan, my progress, and previous

actions, please help $AGENT_NAME$ choose adjustments and select my next available action.  Note that a container 

can contain three objects, and will be lost once transported to the bed. I can only put objects into the container I hold 

after grasping it. Actions take several steps to finish. It may be costly to go to another room or transport to the bed, use 

these actions sparingly.

The collaboration plan has the highest priority, if the number of steps is close to 3000, it is most important to get the 

things in hand or the nearest things to the bed as soon as possible, rather than continue to look for. 

Because I need to complete the task step by step, you only need to help me to choose the next step that needs to be 

taken. Your response must be one of the Available actions.

Goal: $GOAL$

Collaboration Plan: $ACTION_PLAN$

Available Actions: $AVAILABLE_ACTIONS$

$AGENT_NAME$ Previous Action: $ACTION_HISTORY1$

$OPPO_NAME$ Previous Action: $ACTION_HISTORY2$

Progress: $PROGRESS$

Think step by step, and choose the next step of $AGENT_NAME$:

Figure 15. Plan Parsing Prompt.
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