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This supplementary document contains the technical proofs of convergence results and some additional experimental results
of the paper entitled “Towards Understanding Convergence and Generalization of AdamW”. It is structured as follows.
Appendix A presents more experimental results. In Appendix B, we first give the detailed algorithmic frameworks of AdamW
and its stagewise variant in Algorithms 1 and 2. Then Appendix F intuitively discusses the generalization benefits of coordinate-
adaptive regularization in AdamW. Next, Appendix G introduces the main proof technique differences between this work and
other works. Appendix E provides the theoretical justification for the approximation n′

t ≈ Fxt ≈ Hxt in Assumption 4.
Appendix F provides some auxiliary lemmas throughout this document. Then Appendix G presents the proof of the convergence
results in Sec. 4, i.e., the proof of Theorems 2 ∼ 4. Next, in Appendix H, we introduce the proof of generalization results
in Sec. 5, including Lemma 5 and Theorems 6 and 7. Finally, Appendix I provides the proofs of some auxiliary lemmas in
Appendix F.
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(a) `2-regularized Adam for 200 epochs (b) `2-regularized Adam for 300 epochs

(c) AdamW for 200 epochs (d) AdamW for 300 epochs

(e) AdamW-D for 200 epochs (f) AdamW-D for 300 epochs
Fig. 3: Visualization of singular values in ViT-small trained by `2-regularized Adam, AdamW and AdamW for 200 and 300 epochs.
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(c) AdamW for 200 epochs (d) AdamW for 300 epochs
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(e) AdamW-D for 200 epochs (f) AdamW-D for 300 epochs
Fig. 3: Visualization of singular values in ViT-small trained by `2-regularized Adam, AdamW and AdamW-D for 200 and 300 epochs.Fig. 3: Visualization of singular values in ViT-small trained by ℓ2-regularized Adam, AdamW and AdamW-D for 200 and 300 epochs.
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Fig. 4: Training and test curves comparison on ImageNet. We independently test AdamW on ResNet18 by using three different seeds,
and plot the average and variance. Similarly, we evaluate `2-regularized Adam (`2-Adam) with three different seeds.

Algorithm 1: AdamW [4]

Input: initialization �0, step size {⌘k}T
k=0, hyper-parameters {�1k}T

k=0 and {�2k}T
k=0 for first- and second-order moments

{mk}T
k=0 and {nk}T

k=0 .
Output: some average of {xk}T

k=0.
1 while k < T do
2 estimate stochastic gradient gk = 1

b

Pb
i=1 rf(xk; ⇠i);

3 estimate first-order moment mk = (1 � �1k)mk + �1kgk;
4 estimate second-order moment nk = (1 � �2k)nk + �2kg2

k;
5 update parameter xk+1 = (1 � �k⌘k)xk � ⌘kmk/

p
nk + �;

6 end

APPENDIX A
MORE EXPERIMENTAL RESULTS

Here we give more experimental investigation on singular values of Hessian in deep networks. In the manuscript, we provide investigation
by training ResNet50 [1] and vision transformer small (ViT-small) [2] for both 100 epochs. Here we provide more visualization results
of ResNet50 [1] and vision transformer small (ViT-small) [2] trained by 200 and 300 epochs. Similarly, we adopt the singular value
estimation method in [3] to estimate the singular values of these two trained networks. Fig. 3 plots the spectral density of these singular
values, and shows that there are more than 99% singular values that are in the range [0, 1] and indeed are much smaller than one. All
these results also accords with the observations on ResNet50 and ViT-small trained by 100 epochs. All these observations support the
results in Sec. 5.2.

For multiple trials of the experiments, we independently test AdamW on ResNet18 by using three different seeds, and plot the
average and variance in Fig. 4. Similarly, we evaluate `2-regularized Adam with three different seeds. From Fig. 4, one can observe that
the performance of these algorithms are stable and consistent.

Algorithm 2: Stagewise AdamW
Input: initialization �0, optimization accuracy {✏k}K

k=1 .
Output: some average of {xk}T

k=0.
1 while k < K do
2 optimize the loss objective by AdamW (algorithm 1) to accuracy ✏k, and output solution xk;
3 end

APPENDIX B
DETAILS OF ADAMW AND ITS STAGEWISE VARIANT

Due to space limitation, in the manuscript, we do not provide the detailed AdamW. Here we give algorithmic framework of AdamW
in Algorithm 1 to help understand. Since in Sec. 4.2.2 we further propose the stagewise AdamW algorithm to solve PŁ-conditioned
nonconvex problems, here we also provide the algorithmic framework of stagewise AdamW in Algorithm 2.
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Algorithm 1: AdamW [1]

Input: initialization x0, step size {ηk}Tk=0, hyper-parameters {β1k}Tk=0 and {β2k}Tk=0 for first- and second-order moments
{mk}Tk=0 and {nk}Tk=0 .

Output: some average of {xk}Tk=0.
1 while k < T do
2 estimate stochastic gradient gk = 1

b

∑b
i=1 ∇f(xk; ξi);

3 estimate first-order moment mk = (1− β1k)mk + β1kgk;
4 estimate second-order moment nk = (1− β2k)nk + β2kg

2
k;

5 update parameter xk+1 = (1− λkηk)xk − ηkmk/
√
nk + δ;

6 end while

APPENDIX A
MORE EXPERIMENTAL RESULTS

Here we give more experimental investigation on singular values of Hessian in deep networks. In the manuscript, we provide investigation
by training ResNet50 [2] and vision transformer small (ViT-small) [3] for both 100 epochs. Here we provide more visualization results
of ResNet50 [2] and vision transformer small (ViT-small) [3] trained by 200 and 300 epochs. Similarly, we adopt the singular value
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Algorithm 2: Stagewise AdamW
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APPENDIX C
GENERALIZATION BENEFITS OF COORDINATE-ADAPTIVE REGULARIZATION IN ADAMW
Now we intuitively discuss the generalization benefits of coordinate-adaptive regularization in AdamW. Due to the high nonconvexity, a
deep network often contains many sharp minima and also flat ones, where sharp minimum often refers to the minimum around which
loss landscape has sharp directions, i.e., large gradient magnitude [5]. Assume current solution xk is around a local sharp basin with
a sharp minimum x∗. Then the sharp directions indexed by I would have large gradients and thus large vk,i (i ∈ I). So for sharp
directions I , AdamW would have much stronger regularization and prevent xk to fast approach x∗; for flat directions Ic, AdamW
would still allow fast update due to small vk,i (i ∈ Ic). This helps xk escape from the local sharp basin in the subsequent training
iterations, since a) the stochastic gradient brings perturbations and possibly brings xk from the sharp basin as proved and also observed
in many works, e.g. [6], [7]; b) xk is at the bottleneck instead of the bottom of the basin due to the slow update on sharp directions I
which largely increases the escaping probability. In contrast, for sharp directions I , ℓ2-regularized Adam would not penalize as stronger
as AdamW, since it needs to trade-off the convergence speed and regularization: stronger regularization benefits the generalization due to
its slow update on sharp directions I , but impairs convergence speed on flat directions Ic. Accordingly, the solution xk in ℓ2-regularized
Adam could faster approach the bottom of the sharp basin which greatly increases the difficulty of escaping. Consider that flat minima
are observed or proved to enjoy better generalization in many works, e.g., the aforementioned three works, AdamW can better trade-off
the generalization and convergence than ℓ2-regularized Adam thanks to its coordinate-adaptive regularization.

APPENDIX D
DISCUSSION ON OUR PROOF TECHNIQUE

For proof techniques, the most related work is [8]. Our convergence analysis and [8] share some similar overall proof roadmap. This
is because we both analyze nonconvex problem under almost the same conditions which actually restricts the proof frameworks, e.g.,
first using smoothness condition and bounded gradient to establish the relation of current loss Fk+1(xk+1) and previous lossFk(xk),
and then accumulating this loss relation to bound the gradient (desired results). For this roadmap, most nonconvex optimization works,
e.g., [9]–[11], actually follow it to achieve their desire results but need to elaborate each proof pieces in the overall proof roadmap
according to their algorithms.

Our convergence analysis also inherits the above overall proof roadmap, but is indeed more elaborated and simpler than the one
in [8] which analyzes their proposed Adan instead of AdamW here. Specifically, both [8] and this work uses smoothness condition
and bounded gradient to establish the relation between current loss Fk+1(xk+1) and previous loss Fk(xk). Despite the algorithm
differences, we apply the bounding technique in [8] to AdamW, and establish

Fk+1(xk+1) ≤ Fk(xk) +
η

2c1
∥∇F (xk)−mk∥22 −

η

4c2
∥uk∥22 , (9)

where uk = mk + λkxk ⊙ vk, while we prove a tighter one by using different bounding strategy:

Fk+1(xk+1) ≤ Fk(xk) +
η

2c1
∥∇F (xk)−mk∥22 −

η

2c2
∥∇F (xk) + λkxk ⊙ vk∥22 −

η

4c2
∥uk∥22 . (10)

By comparison, our Eqn. (10) is stronger than Eqn. (9) in [8] because of the term (− η
2c2

∥∇F (xk) + λkxk ⊙ vk∥22) which can
help cancel many terms related to ∥∇F (xk) + λkxk ⊙ vk∥22 and greatly simplify the proof as discussed below. See the details and
mathematical derivations of Eqn. (10) and Eqn. (9) in Appendix I.3.

Then Xie et al. accumulate their Eqn. (9) and also uses other techniques to sequentially upper bound

1

T

T∑

k=1

E
[
∥mk + λkxk ⊙ vk∥22

]
≤ ϵ2,

1

T

T∑

k=1

E
[
∥mk −∇F (xk)∥22

]
≤ 1

4
ϵ2

and then use them to prove the desired results

1

T

T∑

k=1

E
[
∥∇Fk(xk)∥22

]
=

1

T

T∑

k=1

E
[
∥∇F (xk) + λkxk ⊙ vk∥22

]
≤ O

(
ϵ2
)
.

In contrast, we can directly prove a stronger desired result in one step without need to prove the temporal bounds on
1
T

∑T
k=1 E

[
∥mk + λkxk ⊙ vk∥22

]
and 1

T

∑T
k=1 E

[
∥mk −∇F (xk)∥22

]
:

1

T

T∑

k=1

E
[
∥∇Fk(xk)∥22 +

1

4
∥uk∥22

]
=

1

T

T∑

k=1

E
[
∥∇F (xk) + λkxk ⊙ vk∥22

]
≤ O

(
ϵ2
)
.

As a result, our proof is much more straightforward and simpler. In our proof, we can directly prove the desired result
1
T

∑T
k=1 E

[
∥∇Fk(xk)∥22 + 1

4∥uk∥22
]
, since a) our Eqn. (10) is tighter than Eqn. (9) in Adan which helps us cancel many terms related

to ∥uk∥22, and b) in the proof, we always consider more elaborated and straightforward steps to prove the desired results. Moreover, we
analyze the problem under the decayed learning rate and the PŁ-conditioned problem which is missing in [8].
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APPENDIX E
JUSTIFICATION ON THE APPROXIMATION n′

t ≈ Fxt ≈ Hxt

Staib et al. [12] proved that the moving average n′
t = (1− β2)n

′
t−1 + β2g

⊤
t gt is a very good estimation ot the Fisher information

matrix Fxt
= 1

n

∑n
i=1 ∇F (xt; ξi)∇F (xt; ξi)

⊤. More specifically, they proved

Φ = ∥n′
t − Fxt∥ ≤ O

(
ηL1/3

)
,

when the iteration number T ≥ O
(
η−2/3

)
. Please refer to their Theorem 4.1, and Proposition 4.1 and 4.2. In our theories, e.g. Theorem

2, we use the learning rate η = O
(
ϵ2
)

which is very small. So the term O
(
ηL1/3

)
is indeed very small, and thus guarantees

n′
t ≈ Fxt . (11)

Then we follow the notation in [13] and [14] to show Fxt is a good estimation to Hessian Hxt . For completeness, we quote
the proof of [13] to here. Please find the same proof in the appendix of [13]. Assume each training sample xi = (ai, bi) contains
a sample ai with a target bi. Let F (xt; ξi) is composed of a prediction function ci = f(xt;ai) and a loss ℓ(bi; ci), namely,
F (xt; ξi) = ℓ(bi; f(xt;ai)), where ci = f(xt;ai) maps the neural network’s input ai to the output ci, and ℓ(bi; ci) measures the
difference between ci and bi. Let Pa,b(x) be the model distribution, and let Rb|c be the predictive distribution used at the network
output so that Rb|c = Pb|f(x;a). Next, let Px(b|a) be the associated probability density. Since many probabilistic models can be
formulated as

ℓ(bi; f(xt;ai)) = − logPx(b|a),
we can formulate

Fxt
=

1

n

n∑

i=1

∇F (xt; ξi)∇F (xt; ξi)
⊤ =

1

n

n∑

i=1

∂ logPx(b|a)
∂x

∂ logPx(b|a)
∂x⊤ ,

For Hessian of this model, we can write it as follows:

Hxt =
1

n

n∑

i=1

∂ logPx(b|a)
∂x

∂ logPx(b|a)
∂x⊤ − 1

Px(b|a)
∂2 logPx(b|a)

∂x∂x⊤ .

One can observe that Hxt has an extra term − 1
Px(b|a)

∂2 logPx(b|a)
∂x∂x⊤ . This extra term can be negligible in the case where the model

is realizable, namely the model’s conditional distribution coincides with the training data’s conditional distribution. Mathematically,
when the parameter is close to an optimum, Px(b|a) is very close to P (b|a). Under this condition, the model has realized the data
distribution and the extra term is a sample estimator of the following zero quantity:

E(a,b)∼P (b|a)

[
1

Px(b|a)
∂2 logPx(b|a)

∂x∂x⊤

]
=

∫
dadbP (a)

∂2 logPx(b|a)
∂x∂x⊤

=

∫
daP (a)

∂2

∂x∂x⊤

[∫
db logPx(b|a)

]

=

∫
daP (a)

∂2

∂x∂x⊤ [1] = 0,

with the estimator becoming more accurate with larger sample number n. Thus, when the parameter is close to an optimum, we have
Fxt

≈ Hxt
.

Finally, combing the result in Eqn. (11), we have

n′
t ≈ Fxt ≈ Hxt .

when the model parameter xt is close to an optimum. It should be mentioned that some works on generalization analysis also directly
use Fxt

≈ Hxt
, such as [13] (see its Assumption 2), and [15] (see its Eqn. (5)). Moreover, to approximate the loss function by a

quadratic loss to simply the analysis challenges while providing theory insights, most works analyze the generalization performance of
an algorithm around a local minimum, such as the references [16] (see its Assumption 4), [17] (see its discussion below Eq. (11)), [7]
(see its section 4), [18] (see its Assumption 4), [19] (see its discussion above Eqn. (7)), [20] (see its Theorem 4.4) in the manuscript. This
local assumption also indicates Fxt

≈ Hxt
which further leads to n′

t ≈ Hxt
. This work also follows this conventional setting, and

thus uses n′
t ≈ Hxt

in Assumption 4.

APPENDIX F
AUXILIARY LEMMAS

Before giving our analysis, we first provide some important lemmas.

Lemma 1. Assume cs,∞ ≤ ∥gk∥∞ ≤ c∞, then we have

∥mk∥∞ ≤ c∞, ∥ni + δ∥∞ ≤ c2∞ + δ,

∥∥∥∥
(nk + δ)p

(nk+1 + δ)p

∥∥∥∥
∞

∈ [1− µ, 1 + µ] (∀p ∈ [0, 1]),
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where µ =
β2c

2
∞

c2s,∞+δ .

See its proof in Appendix I.1.

Lemma 2. [8] The sequence {xk}Tk=0 generated by AdamW in Eqn. (2) satisfies

E
[
∥mk −∇F (xk)∥2

]
≤ (1− β1)E

[
∥mk−1 −∇F (xk−1)∥2

]
+

(1− β1)
2L2

β1
E
[
∥xk − xk−1∥2

]
+

β2
1σ

2

b
.

Lemma 3. For any x ∈ (0, 1
4 ), then there exists α > 0 such that (1− x)

3
2 ≤ 1− x1−α.

See its proof in Appendix I.2.

APPENDIX G
PROOF OF THE MAIN RESULTS IN SECTION 4
G.1 Proof of Theorem 1

Proof. Here we first use a specific least square problem to analyze the different convergence performance of AdamW and ℓ2-Adam:

min
x∈R

F (x) := Eξ∼N (0,1)
1

2
∥ax− ξ∥22,

where a ̸= 0 is a constant. In the following we analyze AdamW and ℓ2-regularized Adam in turn.
Step 1. Analysis of AdamW. For the above problem, AdamW has the following updating rule:

gk = a(axk − ξ), mk = (1− β1)mk−1 + β1gk, nk = (1− β2)nk−1 + β2g
2
k,

where m0 = 0 and n0 = 0. In this way, by setting γk = 1/
√
nk + δ for notation simplicity, the formulation of AdamW can be written

as

xk+1 =xk − ηkγkmk − ηkλkxk = (1− ηkλk)xk − ηkγkmk.

Since x∗ = 0 is the optimum solution, we have

xk − x∗ =

[
k∏

i=1

(1− ηiλi)

]
(x0 − x∗)−

k∑

i=1

ηiγimi




k∏

j=i+1

(1− ηjλj)


 .

So we have

E∥xk − x∗∥ =

[
k∏

i=1

(1− ηiλi)

]
E∥x0 − x∗∥+

k∑

i=1

ηiγiE∥mi∥




k∏

j=i+1

(1− ηjλj)




Then by setting λk = λ, ηk = η, we have

E∥xk − x∗∥ =

[
k∏

i=1

(1− ηiλi)

]
E∥x0 − x∗∥+

k∑

i=1

ηiγiE∥mi∥




k∏

j=i+1

(1− ηjλj)




≤(1− ηλ)k∆+

k∑

i=1

ηγiτ(1− ηλ)k−i

≤(1− ηλ)k∆+
ητ

δ
1
2

k∑

i=1

(1− ηλ)k−i

≤(1− ηλ)k∆+
τ

λδ
1
2

,

where in the first inequality, we use E∥x0 − x∗∥2 ≤ ∆, E[∥gk∥2] ≤ τ which yields

∥mk+1∥2 = ∥(1− β1)mk + β1gk∥2 ≤ (1− β1) ∥mk∥2 + β1 ∥gk∥2 ≤ τ.

Finally, by setting λ = 1

δ
1
2
k

1
2+α and η = 3

2δ
1
2 k−α−1, we have

E∥xk − x∗∥ ≤
(
1− 3

2
k−1/2

)k

∆+
τ

k
1
2+α

≤
(
1− 3

2
k−1/2

)k

Λ +
τ

k
1
2+α

, (12)

where Λ = ∆+ η0. This proves the desired result. In Theorem 1, we use the hyper-parameter setting in this proof framework.
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Then, we give another solution to prove Eqn. (12). But in Theorem 1, we do not use the hyper-parameter setting in this proof
framework, and just provide another analysis framework. To begin with, AdamW has the following updating rule:

gk = a(axk − ξ), mk = (1− β1)mk−1 + β1gk, nk = (1− β2)nk−1 + β2g
2
k,

where m0 = 0 and n0 = 0. In this way, by setting γk = 1/
√
nk + δ for notation simplicity, the formulation of AdamW can be written

as
xk+1 =xk − ηkγkmk − ηkλkxk = (1− ηkλk)xk − ηkγkmk = (1− ηkλk)xk − ηkγk((1− β1)mk−1 + β1gk)

=(1− ηkλk)xk − ηkγk(1− β1)
(1− ηk−1λk−1)xk−1 − xk

ηk−1γk−1
− ηkγkβ1gk

=

(
1− ηkλk +

ηkγk

ηk−1γk−1
(1− β1)

)
xk − (1− β1)(1− ηk−1λk−1)

ηkγk

ηk−1γk−1
xk−1 − ηkγkβ1gk.

Since x∗ = 0 is the optimum solution, we have
[
xk+1 − x∗
xk − x∗

]
=

[
1− ηkλk + ηkγk

ηk−1γk−1
(1− β1) −(1− β1)(1− ηk−1λk−1)

ηkγk

ηk−1γk−1

1 0

] [
xk − x∗

xk−1 − x∗

]
−
[
ηkγkβ1gk

0

]

=Ak

[
xk − x∗

xk−1 − x∗

]
−
[
ηkγkβ1gk

0

]
=

[
k∏

i=1

Ai

] [
x1 − x∗
x0 − x∗

]
−

k∑

i=1




k∏

j=i+1

Aj



[
ηiγiβ1gi

0

]
,

For matrix Ak, we can compute its eigenvalues as
ck ±

√
c2k − 4bk
2

,

where ck = 1− ηkλk + ηkγk

ηk−1γk−1
(1− β1) and bk = (1− β1)(1− ηk−1λk−1)

ηkγk

ηk−1γk−1
. By setting

c2k − 4bk ≤ 0, (13)

then the two eigenvalues are complex, and in particular they must be complex conjugates of each other. So they must have the same
absolute value (because a complex number and its conjugate have the same absolute value) and the square of their absolute value must
be equal to their product (because a complex number’s absolute value is the square root of itself times its conjugate). Explicitly, if we
call the eigenvalues d1 and d2:

d∗1 = d2, |d21| = |d2|2 = d1d
∗
2 = d1d2 = bk,

which means that
d1 = d2 =

√
bk.

So we have

E
∥∥∥∥
[
xk+1 − x∗
xk − x∗

]∥∥∥∥ ≤E

∥∥∥∥∥

[
k∏

i=1

Ai

]∥∥∥∥∥

∥∥∥∥
[
x1 − x∗
x0 − x∗

]∥∥∥∥+ E
k∑

i=1

∥∥∥∥∥∥




k∏

j=i+1

Aj



∥∥∥∥∥∥

∥∥∥∥
[
ηiγiβ1gi

0

]∥∥∥∥

≤E
k∏

i=1

b
1
2
i

∥∥∥∥
[
x1 − x∗
x0 − x∗

]∥∥∥∥+ E
k∑

i=1

k∏

j=i+1

b
1
2
j ηiγiβ1∥gi∥

①

≤(1− β1)
k
2
ηkγk

η0γ0

k−1∏

j=0

(1− ηjλj)E
∥∥∥∥
[
x1 − x∗
x0 − x∗

]∥∥∥∥+ τβ1ηkγk

k∑

i=1

(1− β1)
k−i
2

k−1∏

j=i

(1− ηjλj)

②

≤(1− β1)
3k
2
η2kγ

2
k

η20γ
2
0

E
∥∥∥∥
[
x1 − x∗
x0 − x∗

]∥∥∥∥+ τβ1ηkγk

k∑

i=1

(1− β1)
3(k−i)

2
ηkγk

ηiγi
,

where ① holds since
∏k

j=i+1 b
1
2
i = (1 − β1)

k−i
2

ηkγk

ηiγi

∏k−1
j=i (1 − ηjλj) and E[∥gk∥2] ≤ τ ; ② holds because of Eqn. (13). Then by

setting λk = γk, ηk = β1/γk and β1 = 1/
√
k, then the condition (13) is satisfied. Assume that E∥x0 − x∗∥2 ≤ ∆, then we have

E∥x1 − x∗∥ =E∥x0 − η0γ0m0 − η0λ0x0 − x∗∥ = E∥x0 − η0g0/
√
∥g0∥2 + δ − η0λ0x0 − x∗∥

≤(1− η0λ0)E∥x0 − x∗∥+ η0 ≤ (1− η0λ0)∆ + η0,

where we use x∗ = 0. In this way, by setting Λ = ∆+ η0, we have

E
∥∥∥∥
[
xk+1 − x∗
xk − x∗

]∥∥∥∥ ≤
(
1− 1√

k

) 3k
2 η2kγ

2
k

η20γ
2
0

Λ +
τηkγk√

k

k∑

i=1

(
1− 1√

k

) 3(k−i)
2 ηkγk

ηiγi

=

(
1− 1√

k

) 3k
2

Λ +
τ

k

(
1−

(
1− 1√

k

) 3
2

)
①

≤
(
1− 1√

k

) 3k
2

Λ +
τ

k
1
2+α

,
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where ① holds since from Lemma 3, we have 1

k

(
1−

(
1− 1√

k

) 3
2

) ≤ 1

k
(
1−

(
1−k− 1

2
+α

)) = 1

k
1
2
+α

.

Step 2. Analysis of ℓ2-Adam. By comparison, the ℓ2-regularized Adam can be formulated as

gk = a(axk − ξ), mk = (1− β1)mk−1 + β1(gk + λkxk), nk = (1− β2)nk−1 + β2(gk + λkxk)
2,

where m0 = 0 and n0 = 0. In this way, by setting γk = 1/
√
nk + δ for notation simplicity, the formulation of ℓ2-Adam can be

written as

xk+1 =xk − ηkγkmk = (1− ηkλk)xk − ηkγk((1− β1)mk−1 + β1(gk + λkxk))

=(1− ηkγkλkβ1)xk − ηkγk(1− β1)
xk−1 − xk

ηk−1γk−1
− ηkγkβ1gk

=

(
1− ηkγkλkβ1 +

ηkγk

ηk−1γk−1
(1− β1)

)
xk − (1− β1)

ηkγk

ηk−1γk−1
xk−1 − ηkγkβ1gk.

Since x∗ = 0 is the optimum solution, we have
[
xk+1 − x∗
xk − x∗

]
=

[
1− ηkγkλkβ1 +

ηkγk

ηk−1γk−1
(1− β1) −(1− β1)

ηkγk

ηk−1γk−1

1 0

] [
xk − x∗

xk−1 − x∗

]
−
[
ηkγkβ1gk

0

]

=Ak

[
xk − x∗

xk−1 − x∗

]
−
[
ηkγkβ1gk

0

]
=

[
k∏

i=1

Ai

] [
x1 − x∗
x0 − x∗

]
−

k∑

i=1




k∏

j=i+1

Aj



[
ηiγiβ1gi

0

]
,

For matrix Ak, we can compute its eigenvalues as
ck ±

√
c2k − 4bk
2

,

where ck = 1− ηkγkλkβ1 +
ηkγk

ηk−1γk−1
(1− β1) and bk = (1− β1)

ηkγk

ηk−1γk−1
. By setting

c2k − 4bk ≤ 0, (14)

then the two eigenvalues are complex, and in particular they must be complex conjugates of each other. So they must have the same
absolute value (because a complex number and its conjugate have the same absolute value) and the square of their absolute value must
be equal to their product (because a complex number’s absolute value is the square root of itself times its conjugate). Explicitly, if we
call the eigenvalues d1 and d2:

d∗1 = d2, |d21| = |d2|2 = d1d
∗
2 = d1d2 = bk,

which means that
d1 = d2 =

√
bk.

So we have

E
∥∥∥∥
[
xk+1 − x∗
xk − x∗

]∥∥∥∥ ≤E

∥∥∥∥∥

[
k∏

i=1

Ai

]∥∥∥∥∥

∥∥∥∥
[
x1 − x∗
x0 − x∗

]∥∥∥∥+ E
k∑

i=1

∥∥∥∥∥∥




k∏

j=i+1

Aj



∥∥∥∥∥∥

∥∥∥∥
[
ηiγiβ1gi

0

]∥∥∥∥

≤E
k∏

i=1

b
1
2
i

∥∥∥∥
[
x1 − x∗
x0 − x∗

]∥∥∥∥+ E
k∑

i=1

k∏

j=i+1

b
1
2
j ηiγiβ1∥gi∥

①

≤(1− β1)
k
2
ηkγk

η0γ0
E
∥∥∥∥
[
x1 − x∗
x0 − x∗

]∥∥∥∥+ τβ1ηkγk

k∑

i=1

(1− β1)
k−i
2 ,

where ① holds since
∏k

j=i+1 b
1
2
i = (1− β1)

k−i
2

ηkγk

ηiγi
and E[∥gk∥2] ≤ τ ; ② holds because of Eqn. (14).

Then by setting ηk = β1/γk and β1 = 1/
√
k, then the condition (14) becomes:

c2k − 4bk ≤ 0 ⇒ λk ∈ [
1

β1

(
2− β1 − 2

√
1− β1

)
,
1

β1

(
2− β1 + 2

√
1− β1

)
].

So we can set
λk = λ = O

(√
k
)

Assume that E∥x0 − x∗∥2 ≤ ∆, then we have

E∥x1 − x∗∥ =E∥x0 − η0γ0m0 − x∗∥ = E∥x0 − η0(g0 + λ0x0)/
√

∥g0 + λ0x0∥2 + δ − x∗∥
≤E∥x0 − x∗∥+ η0 ≤ ∆+ η0,
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where we use x∗ = 0. In this way, by setting Λ = ∆+ η0, we have

E
∥∥∥∥
[
xk+1 − x∗
xk − x∗

]∥∥∥∥ ≤
(
1− 1√

k

) k
2 ηkγk

η0γ0
Λ +

τηkγk√
k

k∑

i=1

(
1− 1√

k

) (k−i)
2

=

(
1− 1√

k

) k
2

Λ +
τ

k

(
1−

(
1− 1√

k

) 1
2

)
①

≤
(
1− 1√

k

) k
2

Λ +
2τ

k
1
2

,

where ① holds since from Lemma 3, we have
(
1− 1√

k

) 1
2 ≤ 1− 1

2k
1
2

. The proof is completed.

G.2 Proof of Theorem 2

Proof. For brevity, we let
vk =

√
nk + δ.

When ∥gi∥∞ ≤ c∞, we have ∥mk∥∞ ≤ c∞ and δ ≤ ∥ni + δ∥∞ ≤ c2∞ + δ in Lemma 1. For brevity, let

c1 := δp ≤ ∥vk∥∞ ≤ c2 := (c2∞ + δ)p. (15)

Also we define

uk := mk + λxk ⊙ vk, xk+1 − xk = −η
mk + λxk ⊙ vk

vk
= −η

uk

vk
.

Moreover, we also define Fk(xk) as follows:

Fk(xk) = F (x) +
λk

2
∥x∥2vk

= Eξ[f(x; ξ)] +
λk

2
∥x∥2vk

,

where λk = λ(1− µ)k in which µ =
β2c

2
∞

δ .
Then by using the smoothness of f(x; ζ), we can obtain

Fk+1(xk+1)

≤F (xk) + ⟨∇F (xk),xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2 +

λk+1

2
∥xk+1∥2vk+1

①

≤F (xk) + ⟨∇F (xk),xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2 +

λk+1

2(1− µ)
∥xk+1∥2vk

②

≤F (xk) +
λk

2
∥xk∥2vk

+ ⟨∇F (xk) + λxk ⊙ vk,xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2 +

λk

2
∥xk+1 − xk∥2vk

=Fk(xk) + ⟨∇F (xk) + λxk ⊙ vk,xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2 +

λk

2
∥xk+1 − xk∥2vk

=Fk(xk)− η

〈
∇F (xk) + λxk ⊙ vk,

uk

vk

〉
+

Lη2

2

∥∥∥∥
uk

vk

∥∥∥∥
2

+
λkη

2

2

∥∥∥∥
uk

vk

∥∥∥∥
2

vk

=Fk(xk) +
1

2

∥∥∥∥
√

η

vk
(∇F (xk) + λxk ⊙ vk − uk)

∥∥∥∥
2

− 1

2

∥∥∥∥
√

η

vk
(∇F (xk) + λkxk ⊙ vk)

∥∥∥∥
2

− 1

2

∥∥∥∥
√

η

vk
uk

∥∥∥∥
2

+
Lη2

2

∥∥∥∥
uk

vk

∥∥∥∥
2

+
λkη

2

2

∥∥∥∥
uk

vk

∥∥∥∥
2

vk

≤Fk(xk) +
η

2c1
∥∇F (xk)−mk∥2 −

η

2c2
∥∇F (xk) + λxk ⊙ vk∥2 −

[
η

2c2
− Lη2

2c21
− λkη

2

2c1

]
∥uk∥2

③

≤Fk(xk) +
η

2c1
∥∇F (xk)−mk∥2 −

η

2c2
∥∇F (xk) + λxk ⊙ vk∥2 −

η

4c2
∥uk∥2

(16)

where ① holds since Lemma 1 proves

∥∥∥∥
(nk+δ)

1
2

(nk+1+δ)
1
2

∥∥∥∥
∞

∈ [1− µ, 1 + µ] (∀p ∈ [0, 1]) in which µ =
β2c

2
∞

δ ; ② holds because

λk+1 = λk+1

1−µ and

∥xk+1∥2vk
= ∥xk∥2vk

+ 2 ⟨xk+1 − xk,xk⟩vk
+ ∥xk+1 − xk∥2vk

;

③ holds, since we set η ≤ c21
2c2(L+λc1)

such that η
4c2

≥ Lη2

2c21
+ λkη

2

2c1
.



9

From Lemma 2, we have

E
[
∥mk −∇F (xk)∥2

]
≤(1− β1)E

[
∥mk−1 −∇F (xk−1)∥2

]
+

(1− β1)
2L2

β1
E
[
∥xk − xk−1∥2

]
+

β2
1σ

2

b

≤(1− β1)E
[
∥mk−1 −∇F (xk−1)∥2

]
+

(1− β1)
2L2η2

β1c21
E
[
∥uk∥2

]
+

β2
1σ

2

b

(17)

where we use xk − xk−1 = ηuk

vk
.

Then we add Eqn. (16) and α× (17) as follows:

Fk+1(xk+1) + αE
[
∥mk+1 −∇F (xk+1)∥2

]

≤Fk(xk)−
η

2c2
∥∇F (xk) + λkxk ⊙ vk∥2 +

[
(1− β1)α+

η

2c1

]
E
[
∥mk−1 −∇F (xk−1)∥2

]

−
[

η

4c2
− α(1− β1)

2L2η2

β1c21

]
E
[
∥uk∥2

]
+

αβ2
1σ

2

b
.

Then by setting α = η
2c1β1

and G(xk+1) = Fk+1(xk+1) +
η

2c1β1
E
[
∥mk+1 −∇F (xk+1)∥2

]
, we can obtain

G(xk+1) ≤G(xk)−
η

2c2
E ∥∇F (xk) + λkxk ⊙ vk∥2 −

η

4c2

[
1− 2c2(1− β1)

2L2η2

β2
1c

3
1

]
E
[
∥uk∥2

]
+

ηβ1σ
2

2c1b
①

≤G(xk)−
η

2c2
E
[
∥∇F (xk) + λkxk ⊙ vk∥2

]
− η

8c2
E
[
∥uk∥2

]
+

ηβ1σ
2

2c1b
,

where ① holds since set η ≤ β1c1
2(1−β1)L

√
c1
c2

such that 2c2(1−β1)
2L2η2

β2
1c

3
1

≤ 1
2 .

Then summing the above inequality from k = 0 to k = T − 1 gives

1

T

T−1∑

k=0

E
[
∥∇F (xk) + λkxk ⊙ vk∥2 +

1

4
∥uk∥2

]
≤2c2
ηT

[G(x0)−G(xT )] +
c2β1σ

2

c1b

≤2c2∆

ηT
+

c2σ
2

c1β1bT
+

c2β1σ
2

c1b

≤ϵ2,

(18)

where we set T ≥ max
(

6c2∆
ηϵ2 , 3c2σ

2

c1β1bϵ2

)
and β1 ≤ c1bϵ

2

3c2β1σ2 , in which

G(x0)−G(xT )

=F0(x0) +
η

2c1β1
E
[
∥m0 −∇F (x0)∥2

]
− FT (xT )−

η

2c1β1
E
[
∥mT −∇F (xT )∥2

]

=F (x0) +
η

2c1β1
E
[
∥m0 −∇F (x0)∥2

]
− F (xT )− λT ∥xT ∥vT

− η

2c1β1
E
[
∥mT −∇F (xT )∥2

]

≤F (x0) +
η

2c1β1
E
[
∥m0 −∇F (x0)∥2

]
− F (xT )

≤∆+
η

2c1β1
E
[
∥m0 −∇F (x0)∥2

]

≤∆+
ησ2

2c1β1b
,

where ∆ = F (x0)− F (x∗). This result directly bounds

1

T

T−1∑

k=0

∥vk ⊙ (xk − xk+1)∥2 =
η2

T

T−1∑

k=0

∥mk + λkxk ⊙ vk∥2 ≤ η2

T

T−1∑

k=0

∥uk∥2 ≤4η2ϵ2.

and

1

T

T−1∑

k=0

∥xk − xk+1∥2 ≤ 4η2ϵ2

c21
.
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Besides, we have

1

T

T−1∑

k=0

E
[
∥mk −∇F (xk)∥2

]
≤ 1

T

T−1∑

k=0

E
[
∥mk + λkxk ⊙ vk −∇F (xk)− λkxk ⊙ vk∥2

]

≤ 2

T

T−1∑

k=0

E
[
∥mk + λkxk ⊙ vk∥2 + ∥∇F (xk)− λkxk ⊙ vk∥2

]

=
2

T

T−1∑

k=0

E
[
∥mk + λkxk ⊙ vk∥2 + ∥uk∥2

]

≤2

[
ϵ2 +

3

4
× 4ϵ2

]
≤ 8ϵ2.

For all hyper-parameters, we put their constrains together:

β1 ≤ c1bϵ
2

3c2σ2
,

where c1 = δp ≤ ∥vk∥∞ ≤
(
c2∞ + δ

)p
= c2 = O

(
c2p∞
)
. For η, it should satisfy

η ≤ β1c1
2(1− β1)L

√
c1
c2

≤ c1bϵ
2

3c2σ2

c1
2L

√
c1
c2

=
c21bϵ

2

6c2σ2L

√
c1
c2

.

where δ is often much smaller than one, and β1 is very small. For T , we have

T ≥max

(
6c2∆

ηϵ2
,
3c2σ

2

c1β1bϵ2

)
= O

(
max

(
6c2∆

ϵ2
6c2σ

2L

c21bϵ
2

√
c2
c1

,
3c2σ

2

c1bϵ2
3c2σ

2

c1bϵ2

))

=O
(
max

(
36c2.52 ∆σ2L

c2.51 bϵ4
,
9c22σ

4

c21b
2ϵ4

))
= O

(
max

(
36c2.5∞ ∆σ2L

δ1.25bϵ4
,
9c2∞σ4

δb2ϵ4

))
.

Now we compute the stochastic gradient complexity. For T iterations, the complexity is

O (Tb) =O
(
max

(
36c2.52 ∆σ2L

c2.51 ϵ4
,
9c22σ

4

c21bϵ
4

))
= O

(
max

(
36c2.5∞ ∆σ2L

δ1.25ϵ4
,
9c2∞σ4

δbϵ4

))
.

The proof is completed.

G.3 Proof of Corollary 1

Proof. First, we have

∥∇F (xk)∥2 = ∥∇Fk(xk)− λkvk ⊙ xk∥2 ≤ ∥∇Fk(xk)∥2 + λk∥vk ⊙ xk∥2 ≤ ∥∇Fk(xk)∥2 + λkρ
′∥xk∥∞ · ∥∇F (xk)∥2.

Then we can obtain

∥∇F (xk)∥2 ≤ 1

1− λkρ′∥xk∥∞
∥∇Fk(xk)∥2.

This completes the proof.

G.4 Proof of Corollary 2

Proof. For Adam and ℓ2-Adam, since our Theorem 2 still holds for the cases where 1) λk = 0 or 2) the loss F (x) is a combination of
the loss and an ℓ2-regularization, they also enjoy the complexity O

(
c2.5∞ ϵ−4

)
. When the loss F (x) is a combination of the loss and an

ℓ2-regularization, one can follow the proof of Theorem 2 to prove the results on ℓ2-Adam. This completes the proof.

G.5 Proof of Theorem 3

Proof. For brevity, we let vk =
√
nk + δ. Since we have ∥mk∥∞ ≤ c∞ and δ ≤ ∥ni + δ∥∞ ≤ c2∞ + δ in Lemma 1, for brevity, let

c1 := δ0.5 ≤ ∥vk∥∞ ≤ c2 := (c2∞ + δ)0.5.

Also we define

uk := mk + λxk ⊙ vk, xk+1 − xk = −ηk
mk + λxk ⊙ vk

vk
= −ηk

uk

vk
.
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Then by using the smoothness of f(x; ζ), we can obtain

Fk+1(xk+1)

≤F (xk) + ⟨∇F (xk),xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2 +

λk+1

2
∥xk+1∥2vk+1

①

≤F (xk) + ⟨∇F (xk),xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2 +

λk+1

2(1− µ)
∥xk+1∥2vk

②

≤F (xk) +
λk

2
∥xk∥2vk

+ ⟨∇F (xk) + λxk ⊙ vk,xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2 +

λk

2
∥xk+1 − xk∥2vk

=Fk(xk) + ⟨∇F (xk) + λxk ⊙ vk,xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2 +

λk

2
∥xk+1 − xk∥2vk

=Fk(xk)− ηk

〈
∇F (xk) + λkxk ⊙ vk,

uk

vk

〉
+

Lη2k
2

∥∥∥∥
uk

vk

∥∥∥∥
2

+
λkη

2
k

2

∥∥∥∥
uk

vk

∥∥∥∥
2

vk

=Fk(xk) +
1

2

∥∥∥∥
√

ηk
vk

(∇F (xk) + λkxk ⊙ vk − uk)

∥∥∥∥
2

− 1

2

∥∥∥∥
√

ηk
vk

(∇F (xk) + λkxk ⊙ vk)

∥∥∥∥
2

− 1

2

∥∥∥∥
√

ηk
vk

uk

∥∥∥∥
2

+
Lη2k
2

∥∥∥∥
uk

vk

∥∥∥∥
2

+
λkη

2
k

2

∥∥∥∥
uk

vk

∥∥∥∥
2

vk

≤Fk(xk) +
ηk
2c1

∥∇F (xk)−mk∥2 −
ηk
2c2

∥∇F (xk) + λxk ⊙ vk∥2 −
[
ηk
2c2

− Lη2k
2c21

− λkη
2
k

2c1

]
∥uk∥2

③

≤Fk(xk) +
ηk
2c1

∥∇F (xk)−mk∥2 −
ηk
2c2

∥∇F (xk) + λkxk ⊙ vk∥2 −
ηk
4c2

∥uk∥2

(19)

where ① holds since Lemma 1 proves
∥∥∥ (nk+δ)0.5

(nk+1+δ)0.5

∥∥∥
∞

∈ [1− µ, 1 + µ] (∀p ∈ [0, 1]) in which µ =
β2c

2
∞

δ ; ② holds because

λk+1 = λk+1

1−µ and

∥xk+1∥2vk
= ∥xk∥2vk

+ 2 ⟨xk+1 − xk,xk⟩vk
+ ∥xk+1 − xk∥2vk

;

③ holds, since we set ηk ≤ c21
2c2(L+λc1)

such that ηk

4c2
≥ Lη2

k

2c21
+

λη2
k

2c1
.

From Lemma 2, we have

E
[
∥mk −∇F (xk)∥2

]
≤(1− β1,k)E

[
∥mk−1 −∇F (xk−1)∥2

]
+

(1− β1,k)
2L2

β1,k
E
[
∥xk − xk−1∥2

]
+

β2
1,kσ

2

b

≤(1− β1,k)E
[
∥mk−1 −∇F (xk−1)∥2

]
+

(1− β1,k)
2L2η2k

β1,kc21
E
[
∥uk∥2

]
+

β2
1,kσ

2

b

(20)

where we use xk − xk−1 = ηk
uk

vk
.

Then we add Eqn. (19) and α× (20) as follows:

Fk+1(xk+1) + αE
[
∥mk+1 −∇F (xk+1)∥2

]

≤Fk(xk)−
ηk
2c2

∥∇F (xk) + λkxk ⊙ vk∥2 +
[
(1− β1,k)α+

ηk
2c1

]
E
[
∥mk−1 −∇F (xk−1)∥2

]

−
[
ηk
4c2

− α(1− β1,k)
2L2η2k

β1,kc21

]
E
[
∥uk∥2

]
+

αβ2
1,kσ

2

b
.

Then by setting α = ηk

2c1β1,k
and G(xk+1) = Fk+1(xk+1) +

ηk

2c1β1,k
E
[
∥mk+1 −∇F (xk+1)∥2

]
, we can obtain

G(xk+1)

≤G(xk)−
ηk
2c2

E ∥∇F (xk) + λkxk ⊙ vk∥2 −
ηk
4c2

[
1− 2c2(1− β1,k)

2L2η2k
β2
1,kc

3
1

]
E
[
∥uk∥2

]
+

ηkβ1,kσ
2

2c1b

①

≤G(xk)−
ηk
2c2

E
[
∥∇F (xk) + λkxk ⊙ vk∥2

]
− ηk

8c2
E
[
∥uk∥2

]
+

ηkβ1,kσ
2

2c1b
,

where ① holds since we set ηk ≤ β1,kc1
2(1−β1,k)L

√
c1
c2

such that 2c2(1−β1,k)
2L2η2

k

β2
1,kc

3
1

≤ 1
2 .
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Then summing the above inequality from k = 0 to k = T − 1 gives

T−1∑

k=0

ηk∑T−1
k=0 ηk

E
[
∥∇F (xk) + λkxk ⊙ vk∥2 +

1

4
∥uk∥2

]
≤ 2c2∑T−1

k=0 ηk
[G(x0)−G(xT )] +

c2
∑T−1

k=0 ηkβ1,kσ
2

c1b
∑T−1

k=0 ηk

≤ 2c2∆∑T−1
k=0 ηk

+
c2η0σ

2

c1β1,0b
∑T−1

k=0 ηk
+

c2σ
2
∑T−1

k=0 ηkβ1,k

c1b
∑T−1

k=0 ηk
,

(21)

where

G(x0)−G(xT )

=F0(x0) +
η0

2c1β1,0
E
[
∥m0 −∇F (x0)∥2

]
− FT (xT )−

η0
2c1β1,0

E
[
∥mT −∇F (xT )∥2

]

=F (x0) +
η0

2c1β1,0
E
[
∥m0 −∇F (x0)∥2

]
− F (xT )− λT ∥xT ∥vT

− η0
2c1β1,0

E
[
∥mT −∇F (xT )∥2

]

≤F (x0) +
η0

2c1β1,0
E
[
∥m0 −∇F (x0)∥2

]
− F (xT )

≤∆+
η0

2c1β1,0
E
[
∥m0 −∇F (x0)∥2

]

≤∆+
η0σ

2

2c1β1,0b
,

where ∆ = F (x0) − F (x∗). Then by setting β1,k = γ1√
k+1

and ηk = γ2β1,k where γ2 =
c1.51

2c0.52 L
γ3 and γ3 = 1 to satisfy

ηk ≤ β1,kc1
2(1−β1,k)L

√
c1
c2

, we have

T−1∑

k=0

ηk∑T−1
k=0 ηk

E
[
∥∇F (xk) + λxk ⊙ vk∥2 +

1

4
∥uk∥2

]

≤ 2c2∆∑T−1
k=0 ηk

+
c2η0σ

2

c1β1,0b
∑T−1

k=0 ηk
+

c2σ
2
∑T−1

k=0 ηkβ1,k

c1b
∑T−1

k=0 ηk
①

≤ c2∆

γ1γ2(
√
T + 1− 2)

+
c2σ

2

2c1bγ1(
√
T + 1− 2)

+
c2γ1σ

2 log(T )

2c1b(
√
T + 1− 2)

=
2c1.52 ∆L

c1.51 γ1γ3(
√
T + 1− 2)

+
c2σ

2

2c1bγ1(
√
T + 1− 2)

+
c2γ1σ

2 log(T )

2c1b(
√
T + 1− 2)

②

≤ 2c2

c1γ1(
√
T + 1− 2)

(
c0.52 L∆

c0.51

+ σ2

)
+

c2γ1σ
2 log(T )

2c1b(
√
T + 1− 2)

≤ϵ2,

where ① uses
∑T−1

k=0 β1,k ≥
∫ T+1

2
γ1√
x
dx = 2γ1(

√
T + 1− 2) and

∑T−1
k=0 ηkβ1,k ≤ γ2

1γ2
∫ T

1
1
xdx = γ2

1γ2 log(T ), and ② holds by
setting

T =O
(
max

(
4c2

c1γ1ϵ4

(
c0.52 L∆

c0.51

+ σ2

)
,
c2γ1σ

2 log
(
1
ϵ

)

2c1bϵ4

))

=O
(
max

(
c2

c1γ1ϵ4

(
c0.52 L∆

c0.51

+ σ2

)
,
c2γ1σ

2 log
(
1
ϵ

)

c1bϵ4

))

=O


max


 c2

c1ϵ4 max
(
1,

c0.252 L0.5∆0.5

c0.251 σ

)
(
c0.52 L∆

c0.51

+ σ2

)
,
c2σ

2 log
(
1
ϵ

)
max

(
1,

c0.252 L0.5∆0.5

c0.251 σ

)

c1bϵ4






=O
(
max

(
c2σ

2

c1bϵ4
log

(
1

ϵ

)
,
c1.252 L0.5∆0.5σ

c1.251 bϵ4
log

(
1

ϵ

)))

where we set γ1 = max
(
1,

c0.252 L0.5∆0.5

c0.251 σ

)
.

For all hyper-parameters, we put their constrains together:

β1,k =
γ√
k + 1

, ηk =
c1.51

2c0.52 L
β1,k =

γc1.51

2c0.52 L
√
k + 1

=
γδ0.75

2(c2∞ + δ)0.25L
√
k + 1

,
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where γ = max
(
1,

c0.252 L0.5∆0.5

c0.251 σ

)
, c1 = δ0.5 ≤ ∥vk∥∞ ≤

(
c2∞ + δ

)0.5
= c2. Then by setting minibatch size as one, one can easily

compute the stochastic gradient complexity

O (Tb) =O
(
max

(
c2σ

2

c1ϵ4
log

(
1

ϵ

)
,
c1.252 L0.5∆0.5σ

c1.251 ϵ4
log

(
1

ϵ

)))

=O
(
max

(
c∞σ2

δ0.5ϵ4
log

(
1

ϵ

)
,
c1.25∞ L0.5∆0.5σ

δ0.625ϵ4
log

(
1

ϵ

)))
.

The above result directly bounds

T−1∑

k=0

ηk∑T−1
k=0 ηk

∥vk ⊙ (xk − xk+1)∥2 =

T−1∑

k=0

η3k∑T−1
k=0 ηk

∥mk + λkxk ⊙ vk∥2

=max
k

η2k

(
T−1∑

k=0

ηk∑T−1
k=0 ηk

∥mk + λkxk ⊙ vk∥2
)

≤η21

T−1∑

k=0

ηk∑T−1
k=0 ηk

∥uk∥2

≤4η21ϵ
2.

Besides, we have
T−1∑

k=0

ηk∑T−1
k=0 ηk

E
[
∥mk −∇F (xk)∥2

]
≤

T−1∑

k=0

ηk∑T−1
k=0 ηk

E
[
∥mk + λkxk ⊙ vk −∇F (xk)− λkxk ⊙ vk∥2

]

≤2

T−1∑

k=0

ηk∑T−1
k=0 ηk

E
[
∥mk + λkxk ⊙ vk∥2 + ∥∇F (xk)− λkxk ⊙ vk∥2

]

=2

T−1∑

k=0

ηk∑T−1
k=0 ηk

E
[
∥mk + λkxk ⊙ vk∥2 + ∥uk∥2

]

≤2

[
ϵ2 +

3

4
× 4ϵ2

]
≤ 8ϵ2.

The proof is completed.

G.6 Proof of Theorem 4
Proof. Step 1. Results under constant learning rate. Here we first consider the conventional one stage training. Firstly, we borrow the
results in Eqn. (18) in Appendix G.2 (proofs for Theorem 2), if η ≤ β1c1

2(1−β1)L

√
c1
c2

, we have

1

T

T−1∑

k=0

E
[
∥∇Fk(xk)∥2 +

1

4
∥uk∥2

]
=

1

T

T−1∑

k=0

E
[
∥∇F (xk) + λkxk ⊙ vk∥2 +

1

4
∥uk∥2

]

≤2c2
ηT

[G(x0)−G(xT )] +
c2β1σ

2

c1b

≤2c2∆

ηT
+

c2
c1β1T

E
[
∥m0 −∇F (x0)∥2

]
+

c2β1σ
2

c1b
,

(22)

where ∆ = F (x0)− F (x∗). Then assume at the (k − 1)-th stage, we already have

E [Fk−1(xk−1)− Fk−1(x∗)] ≤ ϵk−1, E
[
∥mk−1 −∇F (xk−1)∥2

]
≤ µϵk−1.

Then at the k-th stage with Tk iteration, by using Eqn. (25), we have

1

Tk

Tk−1∑

k=0

E
[
∥∇Fk(xk)∥2 +

1

4
∥uk∥2

]
≤2c2ϵk−1

ηT
+

c2µϵk−1

c1β1T
+

c2β1σ
2

c1b
≤ µϵk

8
, (23)

where we set βk ≤ µc1bϵk
24c2σ2 and Tk ≥ max

(
16c2ϵk−1

µηkϵk
, 8c2ϵk−1

c1β1ϵk

)
. Considering ηk ≤ β1c1

2(1−β1)L

√
c1
c2

, then we have

β1 ≤ c1µbϵk
24c2σ2

, η ≤ β1c1
2(1− β1)L

√
c1
c2

= O
(
c1µbϵk
24c2σ2

· c1
2L

√
c1
c2

)
= O

(
µc2.51 bϵk
48c1.52 Lσ2

)
,

Tk ≥ max

(
16c2ϵk−1

µηkϵk
,
8c2ϵk−1

c1β1ϵk

)
= O

(
max

(
c2.52 Lσ2ϵk−1

µ2c2.51 bϵ2k
,
c22σ

2ϵk−1

µc21bϵ
2
k

))
= O

(
max

(
c2.52 Lσ2

µ2c2.51 bϵk
,

c22σ
2

µc21bϵk

))
,
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where the last inequality uses ϵk = ϵ0
2k

= 1
2ϵk−1. Then by using the PŁcondition, we have

E [Fk(xk)− Fk(x∗)] ≤
1

Tk

Tk−1∑

i=0

E [Fi(xi)− Fi(x∗)] ≤
1

2µTk

Tk−1∑

i=0

E
[
∥∇Fi(xi)∥2

]
≤ ϵk,

and

E
[
∥mk −∇F (xk)∥2

]
=

1

Tk

Tk−1∑

i=0

E
[
∥mi −∇F (xi)∥2

]
=

1

Tk

Tk−1∑

i=0

E
[
∥mi + λixi ⊙ vi −∇F (xi)− λixi ⊙ vi∥2

]

=
2

Tk

Tk−1∑

i=0

E
[
∥mi + λixi ⊙ vi∥2 + ∥∇F (xi) + λixi ⊙ vi∥2

]

=
2

Tk

Tk−1∑

i=0

E
[
∥mi + λixi ⊙ vi∥2 + ∥ui∥2

]

≤2µ

[
1

8
ϵk +

3

4
× 4× 1

8
ϵk

]
≤ µϵk.

This means that we only need the stochastic gradient complexity for the k-th stage:

O (Tkb) ≤ O
(
max

(
c2.52 Lσ2

µ2c2.51 ϵk
,
c22σ

2

µc21ϵk

))
.

Finally, to achieve ϵ-accuracy solution, we only need to run at most K stages which should satisfy

ϵK =
ϵ0
2K

≤ ϵ,

where ϵ0 = ∆. So it means that K should obey

K ≥ log2

(
1

ϵ

)
.

In this way, we can compute the total computational complexity as follows:

K∑

k=1

E [Tkb] =E

[
K∑

k=1

O
(
max

(
c2.52 Lσ2

µ2c2.51 ϵk
,
c22σ

2

µc21ϵk

))]
= O

(
max

(
c2.52 Lσ2

µ2c2.51

,
c22σ

2

µc21

)
E

[
K∑

k=1

1

ϵk

])

=O
(
max

(
c2.52 Lσ2

µ2c2.51 ϵ
,
c22σ

2

µc21ϵ

))
= O

(
max

( c2.5∞ Lσ2

µ2δ1.25ϵ
,
c2∞σ2

µδϵ

))
.

Step 2. Results under decaying learning rate. Firstly, we borrow the results in Eqn. (21) in Appendix G.5 (proofs for Theorem 3), we
have

1

T

T−1∑

k=0

E
[
∥∇Fk(xk)∥2 +

1

4
∥uk∥2

]
=

T−1∑

k=0

ηk∑T−1
k=0 ηk

E
[
∥∇F (xk) + λkxk ⊙ vk∥2 +

1

4
∥uk∥2

]

≤ 2c2∑T−1
k=0 ηk

[G(x0)−G(xT )] +
c2
∑T−1

k=0 ηkβ1,kσ
2

c1b
∑T−1

k=0 ηk

≤ 2c2∑T−1
k=0 ηk

[
∆+

η0
2c1β1,0

E
[
∥m0 −∇F (x0)∥2

]]
+

c2σ
2
∑T−1

k=0 ηkβ1,k

c1b
∑T−1

k=0 ηk

≤ 2c2∆∑T−1
k=0 ηk

+
η0c2

c1β1,0

∑T−1
k=0 ηk

E
[
∥m0 −∇F (x0)∥2

]
+

c2σ
2
∑T−1

k=0 ηkβ1,k

c1b
∑T−1

k=0 ηk

(24)

where ∆ = F (x0)− F (x∗). Then assume at the (k − 1)-th stage, we already have

E [Fk−1(xk−1)− Fk−1(x∗)] ≤ ϵk−1, E
[
∥mk−1 −∇F (xk−1)∥2

]
≤ µϵk−1.

Then at the k-th stage with Tk iteration, by using Eqn. (24), we have

1

Tk

Tk−1∑

k=0

E
[
∥∇Fk(xk)∥2 +

1

4
∥uk∥2

]
≤ 2c2ϵk−1∑T−1

k=0 ηk
+

µη0c2ϵk−1

c1β1,0

∑T−1
k=0 ηk

+
c2σ

2
∑T−1

k=0 ηkβ1,k

c1b
∑T−1

k=0 ηk
. (25)
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Then, following the proof in Appendix G.5, we set β1,k = γ1√
k+1

and ηk = γ2β1,k where γ2 =
c1.51

2c0.52 L
γ3 and γ3 = 1 to satisfy

ηk ≤ β1,kc1
2(1−β1,k)L

√
c1
c2

, then we have

1

T

T−1∑

k=0

E
[
∥∇Fk(xk)∥2 +

1

4
∥uk∥2

]
≤ 2c2ϵk−1

γ2
∑T−1

k=0 β1,k

+
µη0c2ϵk−1

c1β1,0γ2
∑T−1

k=0 β1,k

+
c2σ

2
∑T−1

k=0 ηkβ1,k

c1bγ2
∑T−1

k=0 β1,k

①

≤ c2ϵk−1

γ2γ1(
√
T + 1− 2)

+
µη0c2ϵk−1

2c1β1,0γ2γ1(
√
T + 1− 2)

+
c2σ

2γ1 log(T )

2c1b(
√
T + 1− 2)

=
2c1.52 Lϵk−1

γ1c1.51 (
√
T + 1− 2)

+
µc2ϵk−1

2c1γ1(
√
T + 1− 2)

+
c2σ

2γ1 log(T )

2c1b(
√
T + 1− 2)

②

≤ µ

8
ϵk,

(26)

where ① uses
∑T−1

k=0 β1,k ≥
∫ T+1

2
γ1√
x
dx = 2γ1(

√
T + 1− 2) and

∑T−1
k=0 ηkβ1,k ≤ γ2

1γ2
∫ T

1
1
xdx = γ2

1γ2 log(T ), and ② holds by
setting

γ1 =
c0.252 L0.5b0.5ϵ0.5k

c0.251 σ
, Tk = O

(
max

(
c32L

2

c31γ
2
1µ

2
,
c22γ

2
1σ

4 log( 1
ϵk
)

µ2c21b
2ϵ2k

))
= O



c2.52 Lσ2 log

(
1
ϵk

)

µ2c2.51 bϵk


 .

This means that by setting

γ1 =
c0.252 L0.5b0.5ϵ0.5k

c0.251 σ
, β1,k =

γ1√
k + 1

, ηk =
c1.51

2c0.52 L
β1,k, Tk = O



c2.52 Lσ2 log

(
1
ϵk

)

µ2c2.51 bϵk


 ,

we have

1

T

T−1∑

k=0

E
[
∥∇Fk(xk)∥2 +

1

4
∥uk∥2

]
≤ µ

8
ϵk. (27)

By using PŁcondition, we have

E [Fk(xk)− Fk(x∗)] ≤
1

Tk

Tk−1∑

i=0

E [Fi(xi)− Fi(x∗)] ≤
1

2µTk

Tk−1∑

i=0

E
[
∥∇Fi(xi)∥2

]
≤ ϵk,

and

E
[
∥mk −∇F (xk)∥2

]
=

1

Tk

Tk−1∑

i=0

E
[
∥mi −∇F (xi)∥2

]
=

1

Tk

Tk−1∑

i=0

E
[
∥mi + λixi ⊙ vi −∇F (xi)− λixi ⊙ vi∥2

]

=
2

Tk

Tk−1∑

i=0

E
[
∥mi + λixi ⊙ vi∥2 + ∥∇F (xi) + λixi ⊙ vi∥2

]

=
2

Tk

Tk−1∑

i=0

E
[
∥mi + λixi ⊙ vi∥2 + ∥ui∥2

]

≤2µ

[
1

8
ϵk +

3

4
× 4× 1

8
ϵk

]
≤ µϵk.

This means that we only need the stochastic gradient complexity for the k-th stage:

O (Tkb) ≤ O



c2.52 Lσ2 log

(
1
ϵk

)

µ2c2.51 ϵk


 .

Finally, to achieve ϵ-accuracy solution, we only need to run at most K stages which should satisfy

ϵK =
ϵ0
2K

≤ ϵ,

where ϵ0 = ∆. So it means that K should obey

K ≥ log2

(
1

ϵ

)
.
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In this way, we can compute the total computational complexity as follows:

K∑

k=1

E [Tkb] = E




K∑

k=1

O



c2.52 Lσ2 log

(
1
ϵk

)

µ2c2.51 ϵk




 = O


c2.52 Lσ2

µ2c2.51

E




K∑

k=1

log
(

1
ϵk

)

ϵk




 = O

(
c2.52 Lσ2

µ2c2.51 ϵ

)
= O

( c2.5∞ Lσ2

µ2δ1.25ϵ

)
.

where

E

[
K∑

k=1

1

ϵk
log

(
1

ϵk

)]
①
=E

[
K∑

k=1

2k

ϵ0
log

(
2k

ϵ0

)]
= O

(
E

[
K∑

k=1

k · 2k
ϵ0

])
= O (E [SK ])

②
= O

(
1

ϵ

)

where we use ϵk = ϵ0
2k

in ①. For ②, we can compute

SK − 2SK−1 =

K∑

k=1

k · 2k
ϵ0

− 2

K−1∑

k=1

k · 2k
ϵ0

=
2

ϵ0
.

Consider S1 = 2
ϵ20

, then we have

SK +
2

ϵ0
= 2

(
SK−1 +

2

ϵ0

)
= 2K−1

(
S1 +

2

ϵ0

)
=

2K+2

ϵ0
=

4

ϵ
,

where we use ϵ0
2K

= ϵ. The proof is completed.

APPENDIX H
PROOF OF RESULTS IN SEC. 5
To begin with, we first give one useful lemma to prove our generalization error bound.

Lemma 4. (PAC-Bayesian generalization bound) [21] For any τ ∈ (0, 1), the expected risk for the posterior hypothesis of an algorithm
over a training dataset Dtr ∼ D with n samples holds with at least probability 1− τ :

Eξ∼D,x∼P [f(x, ξ)]− Eξ∈Dtr,x∼P [f(x, ξ)] ≤ 4

√
1

n

(
KL(P∥Ppre) + ln

(
2n

τ

))
,

where KL(P∥Ppre) denotes the Kullback-Leibler divergence from prior Ppre to posterior P .

H.1 Proof of Lemma 5
Proof. Based on the assumptions in Lemma 5, we can write the SDE equations as follows:

dxt =−Qt∇F (xt)dt− λxtdt+Qt (2Σt)
1
2 dζt

=−QtH∗xtdt− λxtdt+Qt (2Σt)
1
2 dζt

=− (QH∗ + λI)xtdt+
√

η

b
QH

1
2∗ dζt,

where dζt ∼ N (0, Idt), Σt ≈ η
2BH∗; Qt = Q := diag

(
[H

− 1
2

∗(11),H
− 1

2

∗(22), · · · ,H
− 1

2

∗(dd)]
)

. Then for this Ornstein–Uhlenbeck
process, we can compute its closed form solution as follows:

xt = exp (−(QH∗ + λI)t)x0 +

√
η

b

∫ t

0

exp (−(QH∗ + λI)(t− t′))QH
1
2∗ dζt′ .

Let M = E
[
xtx

⊤
t

]
. In this way, we follow [19] (see their Appendix B) and can further compute the algebraic relation for the

stationary covariance of the multivariate Ornstein–Uhlenbeck process as follows:

(QH∗ + λI)M +M⊤(QH∗ + λI)⊤

=
η

b

∫ t

−∞
(QH∗ + λI) exp (−(QH∗ + λI)(t− t′))QH

1
2∗ (QH

1
2∗ )⊤ exp

(
−(QH∗ + λI)⊤(t− t′)

)
dt′

+
η

b

∫ t

−∞
exp (−(QH∗ + λI)(t− t′))QH

1
2∗ (QH

1
2∗ )⊤ exp

(
−(QH∗ + λI)⊤(t− t′)

)
dt′(QH∗ + λI)

=
η

b

∫ t

−∞

d
dt′

(
exp (−(QH∗ + λI)(t− t′))QH

1
2∗ (QH

1
2∗ )⊤ exp

(
−(QH∗ + λI)⊤(t− t′)

))

=
η

b
QH

1
2∗ (QH

1
2∗ )⊤ =

η

b
QH∗Q,

where we use the lower limits of the integral vanishes by the positivity of the eigenvalues of QH∗ + λI . Therefore, we know

MAdamW =
η

2b
(QH∗ + λI)−1QH∗Q.

The proof is completed.
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H.2 Proof of Theorem 6
Proof. According to the assumption in Theorem 6, we know that for AdamW, its prior and posterior distributions are both Gaussian
distribution, namely Ppre ∼ N (0, ρI) and P ∼ N (x∗,MAdamW) where

MAdamW =
η

2b
(QH∗ + λI)−1QH∗Q.

On the other hand, for KL between two Gaussian distributions W1 ∼ (u1,Σ1) and W2 ∼ (u2,Σ2), we can follow [22] and
compute it as follows:

KL(W2∥W1) =
1

2

[
log

det(Σ1)

det(Σ2)
+ Tr

(
Σ−1

1 Σ2

)]
+

1

2
(u1 − u2)

⊤Σ−1
1 (u1 − u2)−

d

2
.

Accordingly, for AdamW, we can compute

KL(P∥Ppre) =
1

2

[
log

ρd
(

η
2b

)d
det(MAdamW)

+
η

2ρb
Tr(MAdamW) +

1

2ρ
∥x∗∥2 −

d

2

]

=
1

2

[
− log det(MAdamW) +

η

2ρb
Tr(MAdamW) + d log

2bρ

η
+

1

2ρ
∥x∗∥2 −

d

2

]
.

Then by using Lemma 4, it further yields the generalization bound of AdamW as follows:

Eξ∼D,x∼P [f(x, ξ)]− Eξ∈Dtr,x∼P [f(x, ξ)] ≤
√

8

n

(
− log det(MAdamW) +

η

2ρb
Tr(MAdamW) + d log

2bρ

η
+ c0

)
,

where c0 = 1
2ρ∥x∗∥2 − d

2 + 2 ln
(
2n
τ

)
. The proof is completed.

H.3 Proof of Theorem 7
Proof. Step 1. Posterior Analysis on Adam+ℓ2-Regularization. Here we borrow the same idea in Lemma 5 and Theorem 6 to analyze
the covariance matrix M = E

[
xtx

⊤
t

]
. To begin with, we simplify the SDE of Adam+ℓ2-Regularization. Based on the assumptions in

Theorem 7, we can write the SDE equations as follows:

dxt =−Qt∇F (xt)dt− λQtxtdt+Qt (2Σt)
1
2 dζt

=−QtH∗xtdt− λQtxtdt+Qt (2Σt)
1
2 dζt

=− (QH∗ + λQ)xtdt+
√

η

b
QH

1
2∗ dζt,

where dζt ∼ N (0, Idt), Σt ≈ η
2BH∗; Qt = Q := diag

(
[H

− 1
2

∗(11),H
− 1

2

∗(22), · · · ,H
− 1

2

∗(dd)]
)

. Then for this Ornstein–Uhlenbeck
process, we can compute its closed form solution as follows:

xt = exp (−(QH∗ + λQ)t)x0 +

√
η

b
QH

1
2∗

∫ t

0

exp (−(QH∗ + λQ)(t− t′)) dζt′ .

Let M = E
[
xtx

⊤
t

]
. In this way, we follow [19] (see their Appendix b) and can further compute the algebraic relation for the stationary

covariance of the multivariate Ornstein–Uhlenbeck process as follows:

(QH∗ + λQ)M +M⊤(QH∗ + λQ)⊤

=
η

b

∫ t

−∞
(QH∗ + λQ) exp

(
−(H

1
2∗ + λH

− 1
2∗ )(t− t′)

)
QH

1
2∗ (QH

1
2∗ )⊤ exp

(
−(QH∗ + λQ)⊤(t− t′)

)
dt′

+
η

b

∫ t

−∞
exp (−(QH∗ + λQ)(t− t′))QH

1
2∗ (QH

1
2∗ )⊤ exp

(
−(QH∗ + λQ)⊤(t− t′)

)
dt′(QH∗ + λQ)

=
η

b

∫ t

−∞

d
dt′

(
exp (−(QH∗ + λQ)(t− t′))QH

1
2∗ (QH

1
2∗ )⊤ exp

(
−(QH∗ + λQ)⊤(t− t′)

))

=
η

b
QH

1
2∗ (QH

1
2∗ )⊤ =

η

b
QH∗Q,

where we use the lower limits of the integral vanishes by the positivity of the eigenvalues of QH∗ + λQ. Then we have

MAdam+ℓ2 =
η

2b
(QH∗ + λQ)−1QH∗Q.

Step 2. Generalization Analysis. According to the assumption in Theorem 7, we know that for Adam + ℓ2 regularization, its prior and
posterior distributions are both Gaussian distribution, namely Ppre ∼ N (0, ρI) and P ∼ N (x∗,MAdam+ℓ2-Reg.) where

MAdam+ℓ2 =
η

2b
(QH∗ + λQ)−1QH∗Q.
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On the other hand, for KL between two Gaussian distributions W1 ∼ (u1,Σ1) and W2 ∼ (u2,Σ2), we can follow [22] and can
compute

Eξ∼D,x∼P [f(x, ξ)]− Eξ∈Dtr,x∼P [f(x, ξ)] ≤
√

8

n

(
− log det(MAdam+ℓ2) +

η

2ρb
Tr(MAdam+ℓ2) + d log

2bρ

η
+ c0

)
,

where c0 = 1
2ρ∥x∗∥2 − d

2 + 2 ln
(
2n
τ

)
. The proof is completed.

H.4 Proof of Corollary 3

Proof. Let USU⊤ is the SVD of H∗, where S = diag (σ1, σ2, · · · , σd). When we approximate Q ≈ H
− 1

2∗ , then MAdamW =
η
2b (QH∗ + λI)−1QH∗Q can be written as

MAdamW =
η

2b
U(S

1
2 + λI)−1U⊤.

Similarly, we can write MAdam+ℓ2 = η
2b (QH∗ + λQ)−1QH∗Q as

MAdam+ℓ2 =
η

2b
US

1
2 (S + λI)−1U⊤.

Accordingly, we can compute

ΦAdamW =

√
8√
n

(
− log det(MAdamW) +

η

2ρb
Tr(MAdamW) + d log

2bρ

η
+ c0

) 1
2

=4

√√√√ 1

2n

(
d∑

i=1

log
2ρb(σ

1
2
i + λ)

η
+

η

2ρb

d∑

i=1

1

σ
1
2
i + λ

+ c0

)

=

√
8√
n
(erradamw + c0)

1
2 ,

where c0 = 1
2ρ∥x∗∥2 − d

2 + 2 ln
(
2n
τ

)
, erradamw =

∑d
i=1 h(x

(i)
AdamW) with x

(i)
AdamW = 2η−1ρb(σ

1
2
i + λ) and h(x) = log x + 1

x .
Similarly, we can obtain

ΦAdam +ℓ2 =

√
8√
n

(
− log det(MAdam +ℓ2) +

η

2ρb
Tr(MAdam +ℓ2) + d log

2bρ

η
+ c0

) 1
2

=4

√√√√ 1

2n

(
d∑

i=1

log
2ρb(σi + λ)

ησ
1
2
i

+
η

2ρb

d∑

i=1

σ
1
2
i

σi + λ
+ c0

)

=

√
8√
n
(erradam+ℓ2 + c0)

1
2 ,

where erradam+ℓ2 =
∑d

i=1 h(x
(i)
Adam +ℓ2) with x

(i)
Adam +ℓ2 = 2η−1ρb(σ

1
2
i + λσ

− 1
2

i ). The proof is completed.

APPENDIX I
PROOFS OF AUXILIARY LEMMAS

I.1 Proof of Lemma 1
Proof. Here we use mathematical induction to prove the first two results. Assume for t ≤ k, we have ∥mt∥∞ ≤ c∞ and ∥nt + δ∥∞ ≤
c∞ + δ. Then for k + 1, we have

∥mk+1∥∞ = ∥(1− β1)mk + β1gk∥∞ ≤ (1− β1) ∥mk∥∞ + β1 ∥gk∥∞ ≤ c∞,

∥nk+1∥∞ =
∥∥(1− β2)nk + β2g

2
k

∥∥
∞ ≤ (1− β2) ∥nk∥∞ + β2

∥∥g2
k

∥∥
∞ ≤ c2∞,

where gk = 1
b

∑b
i=1 ∇f(xk; ζi). On the other hand, we have

∥∥∥∥
nk + δ

nk+1 + δ

∥∥∥∥
∞

=

∥∥∥∥1 +
nk − nk+1

nk+1 + δ

∥∥∥∥
∞

=

∥∥∥∥1 +
β2(nk − g2

k)

nk+1 + δ

∥∥∥∥
∞

∈
[
1− β2c

2
∞

c2s,∞ + δ
, 1 +

β2c
2
∞

c2s,∞ + δ

]

where nk+1 = (1− β2)nk + β2g
2
k. Therefore, for any 1 ≥ p ≥ 0, we can easily obtain

∥∥∥∥
(nk + δ)p

(nk+1 + δ)p

∥∥∥∥
∞

∈
[(

1− β2c
2
∞

c2s,∞ + δ

)p

,

(
1 +

β2c
2
∞

c2s,∞ + δ

)p]
∈
[
1− β2c

2
∞

c2s,∞ + δ
, 1 +

β2c
2
∞

c2s,∞ + δ

]
.

where nk+1 = (1− β2)nk + β2g
2
k. The proof is completed.
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I.2 Proof of Lemma 3
Proof. To prove (1−x)

3
2 ≤ 1−x1−α, we only need to prove 3x+ 2

xα ≤ 3+x2+x1−2α. Since x ∈ (0, 1
4 ), we have 3x+ 2

xα ≤ 3
4+

2
xα .

In this way, we only need to prove 2
xα ≤ 9

4 + x2 + x1−2α. This means that if we prove 2
xα ≤ 9

4 , then we can obtain the desired result,
since x2 + x1−2α > 0. For 2

xα ≤ 9
4 , we can transfer it into its equivalent formulation: 8

9 ≤ xα. Since x ∈ (0, 1
4 ), we can always find a

very small α > 0 so that 8
9 ≤ xα. This completes our proof.

I.3 Proof of Eqn. (10) and Eqn. (9) in Appendix D
Proof. The improvement of Eqn. (10) over Eqn. (9) in Appendix comes from their different techniques. Our Eqn. (10) is derived from
Eqn. (16) in the Appendix G.2, while Eqn. (9) in [8] is derived by applying the bounding technique in [8], namely, the technique in the
equation below their Eqn. (11). By comparison, our Eqn. (16) uses more tighter bound to prove the desired results.

Specifically, we can extend the bounding technique in [8] to AdamW, to derive the results. In this way, Xie et al. and we can both
obtain the following same inequality:

Fk+1(xk+1) ≤ Fk(xk) + ⟨∇F (xk) + λkxk ⊙ vk,xk+1 − xk⟩+
L

2
∥xk+1 − xk∥22 +

λk

2
∥xk+1 − xk∥2vk

. (28)

For Eqn. (28), one can refer to the derivation in Eqn. (16) in our Appendix G.2. Then, we follow the bounding technique in [8], and can
prove the following results on AdamW:

Fk+1(xk+1)
①

≤Fk(xk) + ⟨∇F (xk)−mk +mk + λkxk ⊙ vk,xk+1 − xk⟩+
(

L

2c1
+

λk

2

)
∥xk+1 − xk∥2vk

②

≤Fk(xk) + ⟨∇F (xk)−mk,xk+1 − xk⟩ −
(
1

η
− L

2c1
− λk

2

)
∥xk+1 − xk∥2vk

③

≤Fk(xk) +
η

2
∥∇F (xk)−mk∥21/√vk

−
(
1

η
− L

2c1
− λk

2

)
∥xk+1 − xk∥2vk

④

≤Fk(xk) +
η

2c1
∥∇F (xk)−mk∥22 −

η

4c2
∥mk + λkxk ⊙ vk∥22,

(29)

where ① holds since ∥xk+1 − xk∥22 ≤ 1
c1
∥xk+1 − xk∥2vk

because of c1 := δ0.5 ≤ ∥vk∥∞. ① holds since xk+1 − xk =

−η
(

mk

vk
+ λkxk

)
and c1 ≤ ∥vk∥∞ ≤ c2 := (c2∞ + δ)0.5 which together yield

⟨mk + λkxk ⊙ vk,xk+1 − xk⟩ =⟨vk

(
mk

vk + λkxk

)
,xk+1 − xk⟩ = −1

η
⟨(xk+1 − xk)⊙ vk,xk+1 − xk⟩

= −1

η
∥xk+1 − xk∥2vk

.

(30)

③ holds by using ⟨a, b⟩ = ⟨a√vk, b/
√
vk⟩ ≤ 1

2η∥a∥2vk
+ η

2∥b∥21/vk
, and ④ holds since η ≤ c1

2(L+λc1)
so that a) 1

2η − L
2c1

− λk

2 ≥
1
2η − L

2c1
− λ

2 ≥ 1
4η and b) ∥xk+1 − xk∥2vk

= η2
∥∥∥mk

vk
+ λkxk

∥∥∥
2

vk

= η2 ∥mk + λkxk ⊙ vk∥21/vk
≥ η2

c2
∥mk + λkxk · vk∥22 .

In contrast, based on Eqn. (28) and

uk = mk + λkxk ⊙ vk, xk+1 − xk = −η
mk + λkxk ⊙ vk

vk
= −η

uk

vk
, (31)

in this work, we use a different bounding technique and prove a tight bound as

Fk+1(xk+1) ≤Fk(xk)− η

〈
∇F (xk) + λkxk ⊙ vk,

uk

vk

〉
+

Lη2

2

∥∥∥∥
uk

vk

∥∥∥∥
2

2

+
λkη

2

2

∥∥∥∥
uk

vk

∥∥∥∥
2

vk

≤Fk(xk)−
〈√

η

vk
(∇F (xk) + λkxk ⊙ vk) ,

√
η

vk
uk

〉
+

Lη2

2

∥∥∥∥
uk

vk

∥∥∥∥
2

2

+
λkη

2

2

∥∥∥∥
uk

vk

∥∥∥∥
2

vk

①

≤Fk(xk) +
1

2

∥∥∥∥
√

η

vk
(∇F (xk) + λkxk ⊙ vk − uk)

∥∥∥∥
2

2

− 1

2

∥∥∥∥
√

η

vk
(∇F (xk) + λkxk ⊙ vk)

∥∥∥∥
2

2

− 1

2

∥∥∥∥
√

η

vk
uk

∥∥∥∥+
Lη2

2

∥∥∥∥
uk

vk

∥∥∥∥
2

2

+
λkη

2

2

∥∥∥∥
uk

vk

∥∥∥∥
2

vk

②

≤Fk(xk) +
η

2c1
∥∇F (xk)−mk∥22 −

[
η

2c2
− Lη2

2c21
− λkη

2

2c1

]
∥uk∥22 −

η

2c2
∥∇F (xk) + λkxk ⊙ vk∥22

③

≤Fk(xk) +
η

2c1
∥∇F (xk)−mk∥22 −

η

4c2
∥uk∥22 −

η

2c2
∥∇F (xk) + λkxk ⊙ vk∥22

④

≤Fk(xk) +
η

2c1
∥∇F (xk)−mk∥22 −

η

4c2
∥mk + λkxk ⊙ vk∥22 −

η

2c2
∥∇F (xk) + λkxk ⊙ vk∥22 ,

(32)
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where ① uses −⟨a, b⟩ = 1
2∥a− b∥22 − 1

2∥a∥22 − 1
2∥b∥22. ② holds because of c1 := δp ≤ ∥vk∥∞ ≤ c2 := (c2∞ + δ)0.5. ③ holds since

we set η ≤ c21
2c2(L+λc1)

such that η
4c2

≥ Lη2

2c21
+ λkη

2

2c1
in which we use λk ≤ λ.

By comparison, by using the techniques in [8] on AdamW, we can only obtain

Fk+1(xk+1) ≤ Fk(xk) +
η

2c1
∥∇F (xk)−mk∥22 −

η

4c2
∥mk + λkxk ⊙ vk∥22, (33)

while using our own techniques on AdamW, we can obtain

Fk+1(xk+1) ≤ Fk(xk) +
η

2c1
∥∇F (xk)−mk∥22 −

η

4c2
∥mk + λkxk ⊙ vk∥22 −

η

2c2
∥∇F (xk) + λkxk ⊙ vk∥22 . (34)

This means that the improvement of Eqn. (10) over Eqn. (9) in Appendix comes from their different techniques instead of the
algorithmic algorithms. Note the extra term − η

2c2
∥∇F (xk) + λkxk ⊙ vk∥22 in our bound can help cancel many terms related to

∥∇F (xk) + λkxk ⊙ vk∥22 and greatly simplify the proof as shown in our Appendix D.
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