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Problem Setup

MoCo pulls together crops of same image, pushs away crops of different images
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One-hot label assignment: query x; has only one positive x; among x; U B
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Issues of hot label assignment: imprecise & uninformative:
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Result: one-hot label cannot guarantee semantically similar samples to close

Theoretical Motivation

Support that the pair (x;, X;) in the training dataset D = {(x;, X;)
unknown distribution & denotes the positive pair in MoCo.
Assume the query x; has ground truth soft label y: € R°*' over the key set B; = {x; U B}
where y? measures the semantic similarity between x; and the t-th key b in buffer B;

i, sampled from an

Theorem 1 (upper bound of generalization error, informal).
Under proper assumptions, for MoCo, with probability 1 — v, the generalization error on
instance discrimination task can be upper bounded as :

one-hot Iabel true sof't label
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training & test error gap

where Vp is the variance of f,, on data D, Fis the covering number of encoder fuw

Remark: the more accurate of the label y, the better the generalization

Given a minibatch samples {¢;}? ., it augments each ¢; into two
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Theorem 2 (lower bound of generalization error, informal).
Under proper assumptions, for MoCo, there exists a contrastive learning problem such
that the generalization error on instance discrimination task is lower bounded as :

onhe-hot Iabel true soft label

generalization error > O (Ep~s [E\y Yy HQJ ).

Remark: lower & upper bounds show generalization error ~ Ep s |||y — ¥V*||,]
the more accurate of the label y, the better the generalization

Solution: Self-Labeling Refinement

Self-Labeling Refinement has two components:

» self-labeling refinery: soft label replaces one-hot label to directly improve label
accuracy

» momentum mixup: increase similarity of positive pair to indirectly improve label
accuracy

MoCo Reformulation: for query x; in minibatch {(x;, x;)}?_,, wemaximize its similarity
to Its positive X; In key set B_{x,}i1 U{b,}- & push it away remaining samples:
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where by is the k-th sample in B, the i-th entry y; of one-hot label y; of query x; is 1.

Target of Reformulation: labels of different samples are defined on a shared
dictionary, and thus can be linearly combined.

Self-labeling refinery iteratively uses network to improve labels during training

» Stepl. for query x;, we use its posmve X; to estimate semantic similarity between x;
and instances in B= {x,} 1u{b,}, ., since X; ana Xx; come from the same image:

S+b ) =
pi=0"""(Xi,by)/ Y oVT(Xi b)),
» Step2. as Xx; is highly similar to itself in B, p:. is much larger than others, conceals
similarity of other semantically similar instances in B. So we remove X, from B

qik:0-1/7_ (Xi7 bk)/zlz'l /#iO--I/T (Xi7 bl)a qii = 0.
» Step3. Linear combination

.V; =1 —ar— By, + Oétpf + 51“7?»

Momentum mixup constructs virtual instance as follows:
Xi=0xi+(1—-0)xx, y:;=0y,+(1—-0)y, 0~ Betadistribution

where X, @7 {x;}$ ., ¥, is refined label by self-labeling refinery

Benefits: the component x, in X’ increases similarity between query x’; and positive
key X, which improves the label accuracy
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Theoretical Analysis on Self-Labeling Refinary

Label-corrupted dataset

Let {(xi,y; ) }i— i resp. denote the pairs of crops and ground-truth semantic label

* crop x; generated from vanilla sample ¢;: obeys ||z; — c.||2<¢

» ground-truth semantic label ¥; € {7:}:Z1 of «: is decided by its corresponding c:

* the classes are separated: [y, — Vx| > 0, |l —ckll2 = 2¢, (Vi # k),

* for each sample c;, at most pn; augmentations are assigned to wrong labels, where n;

denotes the crop sample number of c¢:

Assume online/target networks f/g: x € Rd — f(W, x) — ngb(Wx)

training loss: Li(W)=2>"7,(¥i —f(W, x;))>=3||y' — (W, X)]|5
gradient descent algorithm: Wm = W; — nVL(Wy)

Theorem 3 (exact label recovery on training data, informal).
Under proper assumptlons after t iterations, for data {x;}!_,, we have

ly' —y*[ls < =2
= - 2 =
\/ﬁ Il;y -

7 “N1y° — y*l2 + a(6p+ ),
estimated label true soft label
where y* = [y}, -+ ,¥L], v* =[yi, - ,¥.], (= ceK?/logK is related to network

Mereever if the following two assumption hold,
¢ p< 24 : label corrupted ratio is small

o (1—ap)|y? —y;|+ 306 < 36: label noise magnitude is small ( § is class label separation)

the estimated label ¢! predicts true label ¥; of any crop x;

Exact label recovery: Yo = y; with k" =argmin;<;cx yE — i

estimated label true label
Remark: along training, self-label refinery recovers corrupted training labels

Theorem 4 (exact prediction of network trained by self-label refinery, informal)
Under proper assumptions, by using the refined label ¥* to train network, the error of

network prediction on tralnlng data X = {x;}"_, is upper bounded as

cq
THf(VVt,X) Y ll2 <6p+ 275,
predlcted label
Mereever if the following two assumption hold,

¢ p< 24 : label corrupted ratio is small

true label

e (1—ap)ly? — yi| Eafgé < %6: label noise magnitude is small (§ is class label separation)
for any vanilla sample ¢;., network f(W;,-) predicts true label y; of any test augmentation =

that ebeys H:?:—cng <Eg;
Exact label prediction: Tk = Tk with k% = argmin) ;g [f(Wi, ) — 74-

estimated Iabel true label

Remark: network trained by self-label refinery predicts label well



