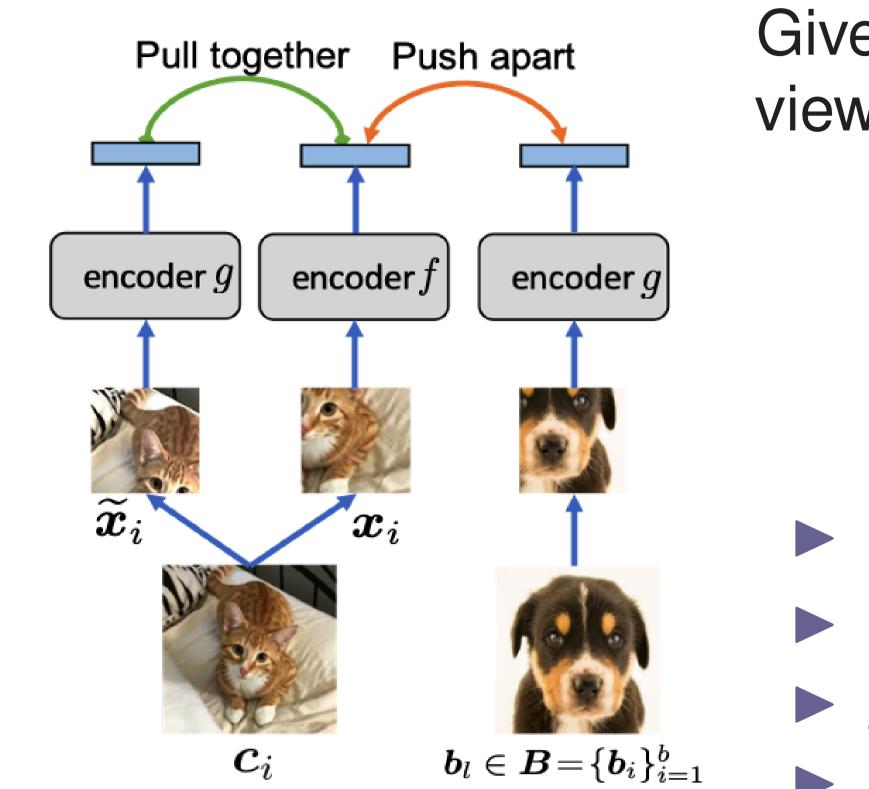
A Theory-Driven Self-Labeling Refinement Method for Contrastive Representation Learning

Problem Setup

MoCo pulls together crops of same image, pushs away crops of different images



Given a minibatch samples $\{c_i\}_{i=1}^s$, it augments each c_i into two views $(\mathbf{x}_i, \widetilde{\mathbf{x}}_i)$ and optimizes:

 $\mathcal{L}_{\mathrm{n}}(oldsymbol{w})\!=\!-rac{1}{s}\!\sum_{i=1}^{s}\log\Bigl(rac{\sigma(oldsymbol{x}_{i},\widetilde{oldsymbol{x}}_{i})}{\sigma(oldsymbol{x}_{i},\widetilde{oldsymbol{x}}_{i})+\sum_{l=1}^{b}\sigma(oldsymbol{x}_{i},oldsymbol{b}_{l})}$ query positive kev

- f_w : online network
- \blacktriangleright g_e: target network
- \blacktriangleright $B = \{b_i\}_{i=1}^{b}$: negative key buffer (previous minibatch crops)

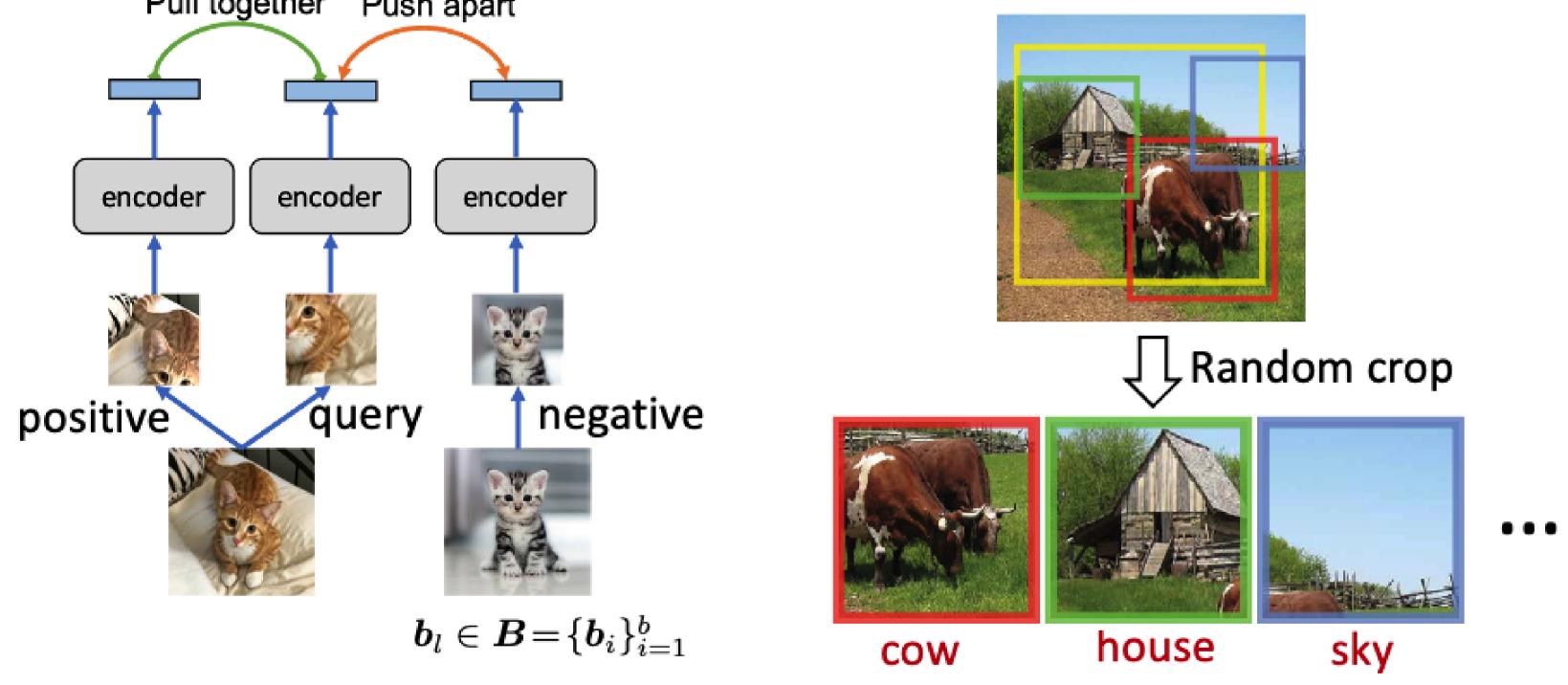
One-hot label assignment: query \mathbf{x}_i has only one positive $\widetilde{\mathbf{x}}_i$ among $\widetilde{\mathbf{x}}_i \cup \mathbf{B}$

$$\mathcal{L}_{n}(\boldsymbol{w}) = -\frac{1}{s} \sum_{i=1}^{s} \log \left(\frac{\sigma(\boldsymbol{x}_{i}, \widetilde{\boldsymbol{x}}_{i})}{\sigma(\boldsymbol{x}_{i}, \widetilde{\boldsymbol{x}}_{i}) + \sum_{l=1}^{b} \sigma(\boldsymbol{x}_{i}, \widetilde{\boldsymbol{x}}_{l})} \right)$$

Issues of hot label assignment: imprecise & uninformative:

(1) some negatives & query from same semantic class Pull together Push apart

(2) augmentations gives different semantic crops



Result: one-hot label cannot guarantee semantically similar samples to close

Theoretical Motivation

Support that the pair $(\mathbf{x}_i, \widetilde{\mathbf{x}}_i)$ in the training dataset $\mathcal{D} = \{(\mathbf{x}_i, \widetilde{\mathbf{x}}_i)\}_{i=1}^n$ sampled from an unknown distribution \mathcal{S} denotes the positive pair in MoCo. Assume the query \mathbf{x}_i has ground truth soft label $\mathbf{y}_i^* \in \mathbb{R}^{b+1}$ over the key set $\mathbf{B}_i = \{\widetilde{\mathbf{x}}_i \cup \mathbf{B}\}$ where y_{it}^* measures the semantic similarity between x_i and the t-th key b'_t in buffer B_i

Theorem 1 (upper bound of generalization error, informal). Under proper assumptions, for MoCo, with probability $1-\nu$, the generalization error on instance discrimination task can be upper bounded as :

one-hot label true soft label $\text{generalization error} \leq \mathcal{O}(\mathbb{E}_{\mathcal{D}\sim} s \left[\| \boldsymbol{y} - \boldsymbol{y}^* \|_2 \right]) + \mathcal{O}(\sqrt{\frac{V_{\mathcal{D}} \ln(\boldsymbol{y})}{2}})$

training & test error gap

where $V_{\mathcal{D}}$ is the variance of f_w on data \mathcal{D} , \mathcal{F} is the covering number of encoder f_w

Remark: the more accurate of the label y, the better the generalization

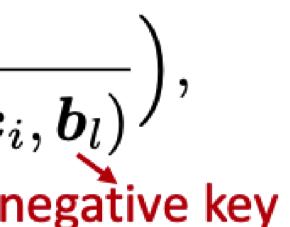
* Salesforce Research

Pan Zhou*, Caiming Xiong*, Xiao-Tong Yuan[†], Steven HOI* [†] Nanjing University of Information Science & Technology {cxiong, shoi}@salesforce.com xtyuan@nuist.edu.cn

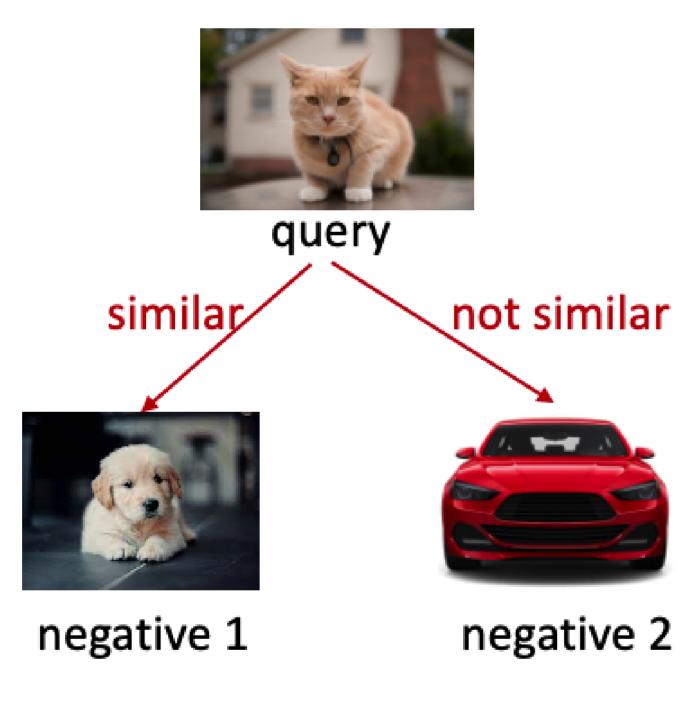
panzhou3@gmail.com

negative key

cosine similarity function



(3) negatives have different similarity to query



$$\frac{\overline{\left(|\mathcal{F}|/\nu\right)}}{n} + \frac{\ln(|\mathcal{F}|/\nu)}{n}\Big),$$

Theoretical Motivation

Theorem 2 (lower bound of generalization error, informal). Under proper assumptions, for MoCo, there exists a contrastive learning problem such that the generalization error on instance discrimination task is lower bounded as :

Solution: Self-Labeling Refinement

Self-Labeling Refinement has two components:

- accuracy
- accuracy

MoCo Reformulation: for query \mathbf{x}_i in minibatch $\{(\mathbf{x}_i, \widetilde{\mathbf{x}}_i)\}_{i=1}^s$, we maximize its similarity to its positive \mathbf{x}_i in key set $\mathbf{\bar{B}} = \{\mathbf{\tilde{x}}_i\}_{i=1}^s \cup \{\mathbf{b}_i\}_{i=1}^b$ & push it away remaining samples:

$$\mathcal{L}_{c}(\boldsymbol{w}, \{(\boldsymbol{x}_{i}, \boldsymbol{y}_{i})\}) = -\frac{1}{s} \sum_{i=1}^{s} \sum_{k=1}^{s+b} \boldsymbol{y}_{ik} \log\left(\frac{\sigma(\boldsymbol{x}_{i}, \bar{\boldsymbol{b}}_{k})}{\sum_{l=1}^{s+b} \sigma(\boldsymbol{x}_{i}, \bar{\boldsymbol{b}}_{l})}\right)$$

dictionary, and thus can be linearly combined.

Step2. as \tilde{x}_i is highly similar to itself in \bar{B} , p_{ii}^t is much larger than others, conceals similarity of other semantically similar instances in \bar{B} . So we remove \tilde{x}_i from \bar{B}

$$\boldsymbol{q}_{ik}^{t} = \sigma^{1/\tau'}(\widetilde{\boldsymbol{x}}_{i}, I)$$

Step3. Linear combination

$$oldsymbol{ar{y}}_i^t = (1$$

Momentum mixup constructs virtual instance as follows:

 $\mathbf{x}'_i = \theta \mathbf{x}_i + (1 - \theta) \widetilde{\mathbf{x}}_k, \quad \mathbf{y}'_i = \theta \overline{\mathbf{y}}_i + (1 - \theta) \overline{\mathbf{y}}_k, \quad \theta \sim \text{Beta distribution}$ where $\widetilde{\mathbf{x}}_k \overset{random}{\sim} {\{\widetilde{\mathbf{x}}_i\}_{i=1}^s, \overline{\mathbf{y}}_i \text{ is refined label by self-labeling refinery}}$ **Benefits**: the component $\widetilde{\mathbf{x}}_k$ in \mathbf{x}'_i increases similarity between query \mathbf{x}'_i and positive key \mathbf{x}'_i , which improves the label accuracy

one-hot label true soft label

generalization error $\geq \mathcal{O}(\mathbb{E}_{\mathcal{D}\sim} \boldsymbol{s}[\|\boldsymbol{y} - \boldsymbol{y}^*\|_2]).$

Remark: lower & upper bounds show generalization error $\sim \mathbb{E}_{\mathcal{D}\sim \mathcal{S}}[||y - y^*||_2]$ the more accurate of the label y, the better the generalization

self-labeling refinery: soft label replaces one-hot label to directly improve label

momentum mixup: increase similarity of positive pair to indirectly improve label

where $\bar{\bm{b}}_k$ is the k-th sample in $\bar{\bm{B}}$, the i-th entry \bm{y}_{ii} of one-hot label \bm{y}_i of query \bm{x}_i is 1. Target of Reformulation: labels of different samples are defined on a shared

Self-labeling refinery iteratively uses network to improve labels during training Step1. for query \mathbf{x}_i , we use its positive $\widetilde{\mathbf{x}}_i$ to estimate semantic similarity between \mathbf{x}_i and instances in $\overline{B} = {\{\widetilde{x}_i\}_{i=1}^s \cup \{b_i\}_{i=1}^b}$, since x_i and \widetilde{x}_i come from the same image: $\boldsymbol{p}_{ik}^{t} = \sigma^{1/\tau'}(\widetilde{\boldsymbol{x}}_{i}, \overline{\boldsymbol{b}}_{k}) / \sum_{l=1}^{s+b} \sigma^{1/\tau'}(\widetilde{\boldsymbol{x}}_{i}, \overline{\boldsymbol{b}}_{l}),$

 $(\bar{\boldsymbol{b}}_{k})/\sum_{l=1}^{s+b}\sigma^{1/\tau'}(\tilde{\boldsymbol{x}}_{l}, \bar{\boldsymbol{b}}_{l}), \ \boldsymbol{q}_{ll}^{t}=0.$

$$-\alpha_t - \beta_t \mathbf{y}_i + \alpha_t \mathbf{p}_i^t + \beta_t \mathbf{q}_i^t,$$

Theoretical Analysis on Self-Labeling Refinary

- ground-truth semantic label $y_i^* \in \{\gamma_t\}_{t=1}^K$ of x_i is decided by its corresponding c_t
- the classes are separated: $|\gamma_i \gamma_k| \ge \delta$, $\|c_i c_k\|_2 \ge 2\varepsilon$, $(\forall i \neq k)$,
- for each sample $m{c}_i$, at most $ho n_i$ augmentations are assigned to wrong labels, where n_i denotes the crop sample number of c_i

Remark: along training, self-label refinery recovers corrupted training labels

that obeys $\| m{x} - m{c}_k \|_2 \leq \varepsilon$:

Remark: network trained by self-label refinery predicts label well

Label-corrupted dataset

- Let $\{(x_i, y_i^*)\}_{i=1}^n$ resp. denote the pairs of crops and ground-truth semantic label
- crop x_i generated from vanilla sample c_t obeys $\|x_i c_t\|_2 \leq \varepsilon$
- Assume online/target networks $f/g: x \in \mathbb{R}^d \mapsto f(W, x) = v^\top \phi(Wx)$ training loss: $\mathcal{L}_t(W) = \frac{1}{2} \sum_{i=1}^n (\bar{y}_i^t - f(W, x_i))^2 = \frac{1}{2} ||\bar{y}_i^t - f(W, X)||_2^2$ gradient descent algorithm: $W_{t+1} = W_t - \eta \nabla \mathcal{L}_t(W_t)$

Theorem 3 (exact label recovery on training data, informal).

Under proper assumptions, after t iterations, for data $\{x_i\}_{i=1}^n$, we have $\frac{1}{\sqrt{n}} \| \boldsymbol{y}^t - \boldsymbol{y}^* \|_2 \le \frac{1 - \alpha_t}{\sqrt{n}} \| \boldsymbol{y}^0 - \boldsymbol{y}^* \|_2 + \alpha_t (6\rho + \zeta),$

- where $y^t = [y_1^t, \cdots, y_n^t]$, $y^* = [y_1^*, \cdots, y_n^*]$, $\zeta = c \varepsilon K^2 \sqrt{\log K}$ is related to network
- Moreover, if the following two assumption hold, • $\rho \leq \frac{\delta}{24}$: label corrupted ratio is small
- $(1 \alpha_0)|y_i^0 y_i^*| + \frac{1}{3}\alpha_0\delta < \frac{1}{2}\delta$: label noise magnitude is small (δ is class label separation) the estimated label y_i^t predicts true label y_i^* of any crop x_i
 - **Exact label recovery:** $\gamma_{k^*} = \boldsymbol{y}_i^*$ with $k^* = \operatorname{argmin}_{1 \le k \le K} |\boldsymbol{y}_i^t \gamma_k|$. estimated label true label
- Theorem 4 (exact prediction of network trained by self-label refinery, informal) Under proper assumptions, by using the refined label $m{y}^t$ to train network, the error of network prediction on training data $X = \{x_i\}_{i=1}^n$ is upper bounded as

$$\frac{1}{\sqrt{n}} \|f(\boldsymbol{W}_t, \boldsymbol{X}) - \boldsymbol{y}^*\|_2 \le 6\rho + \frac{c\zeta}{K\Gamma^2},$$

predicted label true label

- Moreover, if the following two assumption hold, • $\rho \leq \frac{\delta}{24}$: label corrupted ratio is small
- $(1 \alpha_0)|y_i^0 y_i^*| + \frac{1}{3}\alpha_0\delta < \frac{1}{2}\delta$: label noise magnitude is small (δ is class label separation) for any vanilla sample c_k , network $f(W_t, \cdot)$ predicts true label y_i^* of any test augmentation x
 - **Exact label prediction:** $\gamma_{k^*} = \gamma_k$ with $k^* = \operatorname{argmin}_{1 \le i \le \overline{K}} |f(W_t, x) \gamma_i|$. estimated label true label