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Problem Setup

MoCo pulls together crops of same image, pushs away crops of different images

Given a minibatch samples {ci}s
i=1, it augments each ci into two

views (x i, x̃ i) and optimizes:

I σ(x i, x̃ i)=exp
(
− 〈f (x i),g(x̃ i)〉
τ‖f (x i)‖2·‖g(x̃ i)‖2

)
: cosine similarity function

I fw: online network
I gξ: target network
I B ={bi}b

i=1: negative key buffer (previous minibatch crops)

One-hot label assignment: query x i has only one positive x̃ i among x̃ i ∪ B

Issues of hot label assignment: imprecise & uninformative:

Result: one-hot label cannot guarantee semantically similar samples to close

Theoretical Motivation

Support that the pair (x i, x̃ i) in the training dataset D = {(x i, x̃ i)}n
i=1 sampled from an

unknown distribution S denotes the positive pair in MoCo.
Assume the query x i has ground truth soft label y∗i ∈ Rb+1 over the key set Bi = {x̃ i ∪ B}
where y∗it measures the semantic similarity between x i and the t-th key b′t in buffer Bi

Remark: the more accurate of the label y, the better the generalization

Theoretical Motivation

Remark: lower & upper bounds show generalization error ∼ ED∼S [‖y − y∗‖2]

the more accurate of the label y, the better the generalization

Solution: Self-Labeling Refinement

Self-Labeling Refinement has two components:
I self-labeling refinery: soft label replaces one-hot label to directly improve label

accuracy
I momentum mixup: increase similarity of positive pair to indirectly improve label

accuracy

MoCo Reformulation: for query x i in minibatch {(x i, x̃ i)}s
i=1, wemaximize its similarity

to its positive x i in key set B̄ ={x̃ i}s
i=1∪{bi}b

i=1 & push it away remaining samples:

Lc

(
w , {(x i,y i)}

)
= −1

s

s∑
i=1

s+b∑
k=1

y ik log

(
σ(x i, b̄k)∑s+b
l=1 σ(x i,b̄l)

)
,

where b̄k is the k-th sample in B̄, the i-th entry y ii of one-hot label y i of query x i is 1.
Target of Reformulation: labels of different samples are defined on a shared
dictionary, and thus can be linearly combined.

Self-labeling refinery iteratively uses network to improve labels during training
I Step1. for query x i, we use its positive x̃ i to estimate semantic similarity between x i

and instances in B̄ ={x̃ i}s
i=1∪{bi}b

i=1, since x i and x̃ i come from the same image:

pt
ik = σ1/τ ′(x̃ i, b̄k)

/∑s+b

l=1
σ1/τ ′(x̃ i, b̄l),

I Step2. as x̃ i is highly similar to itself in B̄, pt
ii is much larger than others, conceals

similarity of other semantically similar instances in B̄. So we remove x̃ i from B̄

qt
ik =σ1/τ ′(x̃ i, b̄k)

/∑s+b

l=1,l 6=i
σ1/τ ′(x̃ i, b̄l), qt

ii = 0.

I Step3. Linear combination
ȳ t

i = (1− αt − βt)y i + αtpt
i + βtqt

i ,

Momentum mixup constructs virtual instance as follows:
x ′i = θx i + (1− θ)x̃k, y ′i = θȳ i + (1− θ)ȳk, θ ∼ Beta distribution

where x̃k
random∼ {x̃ i}s

i=1, ȳ i is refined label by self-labeling refinery
Benefits: the component x̃k in x ′i increases similarity between query x ′i and positive
key x ′i, which improves the label accuracy

Experiments

Theoretical Analysis on Self-Labeling Refinary

Assume online/target networks f /g: x ∈ Rd 7→ f (W ,x) = v>φ(Wx)
training loss: Lt(W )= 1

2

∑n
i=1(ȳ t

i −f (W,x i))2 = 1
2‖ȳ

t −f (W ,X )‖2
2

gradient descent algorithm: W t+1 = W t − η∇Lt(W t)

Remark: along training, self-label refinery recovers corrupted training labels

Remark: network trained by self-label refinery predicts label well


