Theory-Inspired Contrastive Learning with Self-Labeling Refinement

Pan Zhou, Caiming Xiong, Xiaotong Yuan, and Steven HOI

Salesforce panzhou3@gmail.com

Dec 06, 2021

Outline

Motivation: why one-hot label in MoCo is not accurate?

Solution for accurate label: self-labeling refinery and momentum mixup

Experiments: higher classification accuracy

Conclusion

Background: MoCo

MoCo pulls together crops of same image, pushs away crops of different images.

Background: MoCo

MoCo pulls together crops of same image, pushs away crops of different images.

Given a minibatch samples $\{c_i\}_{i=1}^s$, it augments each c_i into two views (x_i, \tilde{x}_i) and optimizes:

$$\mathcal{L}_{n}(\boldsymbol{w}) = -\frac{1}{s} \sum_{i=1}^{s} \log \Bigl(\frac{\sigma(\boldsymbol{x}_{i}, \widetilde{\boldsymbol{x}}_{i})}{\sigma(\boldsymbol{x}_{i}, \widetilde{\boldsymbol{x}}_{i}) + \sum_{l=1}^{b} \sigma(\boldsymbol{x}_{i}, \boldsymbol{b}_{l})} \Bigr),$$
query positive key negative key

- $\sigma(\mathbf{x}_i, \widetilde{\mathbf{x}}_i) = \exp\left(-\frac{\langle f(\mathbf{x}_i), g(\widetilde{\mathbf{x}}_i) \rangle}{\tau \| f(\mathbf{x}_i) \|_2 \cdot \| g(\widetilde{\mathbf{x}}_i) \|_2}\right)$: cosine similarity function
- f_w : online network
- g_{ξ} : target network
- $B = \{b_i\}_{i=1}^b$: negative key buffer (previous minibatch crops)

One-hot label assignment: query $m{x}_i$ has only one positive $\widetilde{m{x}}_i$ among $\widetilde{m{x}}_i \cup m{B}$

$$\mathcal{L}_{n}(\boldsymbol{w}) = -\frac{1}{s} \sum_{i=1}^{s} \log \Big(\frac{\sigma(\boldsymbol{x}_{i}, \widetilde{\boldsymbol{x}}_{i})}{\sigma(\boldsymbol{x}_{i}, \widetilde{\boldsymbol{x}}_{i}) + \sum_{l=1}^{b} \sigma(\boldsymbol{x}_{i}, \boldsymbol{b}_{l})} \Big),$$
query positive key negative key

One-hot label assignment: query $m{x}_i$ has only one positive $\widetilde{m{x}}_i$ among $\widetilde{m{x}}_i \cup m{B}$

Issues of hot label assignment: imprecise & uninformative

• some negatives & query belong to same semantic class

One-hot label assignment: query $m{x}_i$ has only one positive $\widetilde{m{x}}_i$ among $\widetilde{m{x}}_i \cup m{B}$

Issues of hot label assignment: imprecise and and uninformative

- some negatives & query belong to same semantic class
- random augmentations provides crops with different semantic information, e.g. image having several objects

. . .

One-hot label assignment: query $m{x}_i$ has only one positive $\widetilde{m{x}}_i$ among $\widetilde{m{x}}_i \cup m{B}$

Issues of hot label assignment: imprecise and and uninformative

- some negatives & query belong to same semantic class
- random augmentations provides crops with different semantic information, e.g. image having several objects
- different negatives have different similarity to query

One-hot label assignment: query $m{x}_i$ has only one positive $\widetilde{m{x}}_i$ among $\widetilde{m{x}}_i \cup m{B}$

$$\mathcal{L}_{n}(\boldsymbol{w}) = -\frac{1}{s} \sum_{i=1}^{s} \log \Bigl(\frac{\sigma(\boldsymbol{x}_{i}, \widetilde{\boldsymbol{x}}_{i})}{\sigma(\boldsymbol{x}_{i}, \widetilde{\boldsymbol{x}}_{i}) + \sum_{l=1}^{b} \sigma(\boldsymbol{x}_{i}, \boldsymbol{b}_{l})} \Bigr),$$
query positive key negative key

Issues of hot label assignment: imprecise and and uninformative

- some negatives & query belong to same semantic class
- random augmentations provides crops with different semantic information, e.g. image having several objects
- different negatives have different similarity to query

Result: one-hot label cannot guarantee semantically similar samples to close

Support that the pair (x_i, \tilde{x}_i) in the training dataset $\mathcal{D} = \{(x_i, \tilde{x}_i)\}_{i=1}^n$ sampled from an unknown distribution \mathcal{S} denotes the positive pair in MoCo.

Assume the query x_i has ground truth soft label $y_i^* \in b+1$ over the key set $B_i = \{ \tilde{x}_i \cup B \}$ where y_{it}^* measures the semantic similarity between x_i and the t-th key b'_t in buffer B_i

Theorem 1 (upper bound of generalization error, informal).

Under proper assumptions, for MoCo, with probability $1 - \nu$, the generalization error on instance discrimination task can be upper bounded as :

$$\underline{\text{generalization error}} \leq \mathcal{O}\big(\mathbb{E}_{\boldsymbol{\mathcal{D}}\sim\boldsymbol{\mathcal{S}}}\left[\|\boldsymbol{y}-\boldsymbol{y}^*\|_2\right]\big) + \mathcal{O}\Big(\sqrt{\frac{V_{\boldsymbol{\mathcal{D}}}\ln(|\mathcal{F}|/\nu)}{n}} + \frac{\ln(|\mathcal{F}|/\nu)}{n}\Big),$$

training & test error gap

where $V_{\mathcal{D}}$ is the variance of f_w on data \mathcal{D} , \mathcal{F} is the covering number of encoder f_w

Support that the pair (x_i, \tilde{x}_i) in the training dataset $\mathcal{D} = \{(x_i, \tilde{x}_i)\}_{i=1}^n$ sampled from an unknown distribution \mathcal{S} denotes the positive pair in MoCo.

Assume the query x_i has ground truth soft label $y_i^* \in b+1$ over the key set $B_i = \{ \tilde{x}_i \cup B \}$ where y_{it}^* measures the semantic similarity between x_i and the t-th key b'_t in buffer B_i

Theorem 1 (upper bound of generalization error, informal).

Under proper assumptions, for MoCo, with probability $1 - \nu$, the generalization error on instance discrimination task can be upper bounded as :

$$\begin{array}{c|c} \text{one-hot label} & \text{true soft label} \\ \hline \text{generalization error} \leq \mathcal{O}\left(\mathbb{E}_{\mathcal{D}\sim\mathcal{S}}\left[\|\boldsymbol{y}-\boldsymbol{y}^{*}\|_{2}\right]\right) + \mathcal{O}\left(\sqrt{\frac{V_{\mathcal{D}}\ln(|\mathcal{F}|/\nu)}{n}} + \frac{\ln(|\mathcal{F}|/\nu)}{n}\right), \end{array}$$

training & test error gap

where $V_{\mathcal{D}}$ is the variance of f_w on data \mathcal{D} , \mathcal{F} is the covering number of encoder f_w

Support that the pair (x_i, \tilde{x}_i) in the training dataset $\mathcal{D} = \{(x_i, \tilde{x}_i)\}_{i=1}^n$ sampled from an unknown distribution \mathcal{S} denotes the positive pair in MoCo.

Assume the query x_i has ground truth soft label $y_i^* \in b+1$ over the key set $B_i = \{ \tilde{x}_i \cup B \}$ where y_{it}^* measures the semantic similarity between x_i and the t-th key b'_t in buffer B_i

Theorem 1 (upper bound of generalization error, informal).

Under proper assumptions, for MoCo, with probability $1 - \nu$, the generalization error on instance discrimination task can be upper bounded as :

where $V_{\mathcal{D}}$ is the variance of f_w on data \mathcal{D} , \mathcal{F} is the covering number of encoder f_w

Support that the pair (x_i, \tilde{x}_i) in the training dataset $\mathcal{D} = \{(x_i, \tilde{x}_i)\}_{i=1}^n$ sampled from an unknown distribution \mathcal{S} denotes the positive pair in MoCo.

Assume the query x_i has ground truth soft label $y_i^* \in b+1$ over the key set $B_i = \{\tilde{x}_i \cup B\}$ where y_{it}^* measures the semantic similarity between x_i and the t-th key b'_t in buffer B_i

Theorem 2 (lower bound of generalization error, informal).

Under proper assumptions, for MoCo, there exists a contrastive learning problem such that the generalization error on instance discrimination task is lower bounded as :

one-hot label true soft label
generalization error
$$\geq \mathcal{O}(\mathbb{E}_{\mathcal{D}\sim \mathcal{S}}[\|\boldsymbol{y} - \boldsymbol{y}^*\|_2)).$$

Lower and upper bounds show that generalization error $\sim \mathbb{E}_{D \sim S} \left[\| y - y^* \|_2 \right]$.

the more accurate of the label y, the better the generalization

Outline

Motivation: why one-hot label in MoCo is not accurate?

Solution for accurate label: self-labeling refinery and momentum mixup

Experiments: higher classification accuracy

Conclusion

Self-Labeling Refinement :

- self-labeling refinery: soft label replaces one-hot label to directly improve label accuracy
- **momentum mixup:** increase similarity of positive pair to indirectly improve label accuracy

Self-Labeling Refinement :

- self-labeling refinery: soft label replaces one-hot label to directly improve label accuracy
- **momentum mixup:** increase similarity of positive pair to indirectly improve label accuracy

Reformulation of MoCo: for query x_i in minibatch $\{(x_i, \tilde{x}_i)\}_{i=1}^s$, we maximize its similarity to its positive \tilde{x}_i in the key set $\bar{B} = \{\tilde{x}_i\}_{i=1}^s \cup \{b_i\}_{i=1}^b$ and push it away from samples in \bar{B} :

$$\mathcal{L}_{\mathrm{c}}ig(oldsymbol{w},\{(oldsymbol{x}_i,oldsymbol{y}_i)\}ig) = -rac{1}{s} \sum_{i=1}^{s} \sum_{k=1}^{s+b} oldsymbol{y}_{ik} \logigg(rac{\sigma(oldsymbol{x}_i,ar{oldsymbol{b}}_k)}{\sum_{l=1}^{s+b} \sigma(oldsymbol{x}_i,ar{oldsymbol{b}}_l)}igg),$$

where $ar{m{b}}_k$ is the k-th sample in $ar{m{B}}$, $m{y}_i$ is the one-hot label of query $m{x}_i$ whose i-th entry $m{y}_{ii}$ is 1.

Self-Labeling Refinement :

- self-labeling refinery: soft label replaces one-hot label to directly improve label accuracy
- **momentum mixup:** increase similarity of positive pair to indirectly improve label accuracy

Reformulation of MoCo: for query x_i in minibatch $\{(x_i, \tilde{x}_i)\}_{i=1}^s$, we maximize its similarity to its positive \tilde{x}_i in the key set $\bar{B} = \{\tilde{x}_i\}_{i=1}^s \cup \{b_i\}_{i=1}^b$ and push it away from samples in \bar{B} :

$$\mathcal{L}_{c}(\boldsymbol{w},\{(\boldsymbol{x}_{i},\boldsymbol{y}_{i})\}) = -rac{1}{s}\sum_{i=1}^{s}\sum_{k=1}^{s+b} \boldsymbol{y}_{ik}\logigg(rac{\sigma(\boldsymbol{x}_{i},ar{m{b}}_{k})}{\sum_{l=1}^{s+b}\sigma(\boldsymbol{x}_{i},ar{m{b}}_{l})}igg),$$

where $ar{m{b}}_k$ is the k-th sample in $ar{m{B}}$, $m{y}_i$ is the one-hot label of query $m{x}_i$ whose i-th entry $m{y}_{ii}$ is 1.

Benefit of Reformulation: labels of different samples are defined on a shared dictionary, and thus can be linearly combined.

Self-Labeling Refinement : (1) self-labeling refinery; (2) momentum mixup

Self-labeling refinery iteratively employs network and data to improve labels during training.

• Step1. for query x_i , we use its positive \tilde{x}_i to estimate semantic similarity between x_i and instances in $\bar{B} = {\{\tilde{x}_i\}_{i=1}^s \cup {\{b_i\}_{i=1}^b}}$, since x_i and \tilde{x}_i come from the same image:

$$\boldsymbol{p}_{ik}^{t} = \sigma^{1/\tau'}(\boldsymbol{\widetilde{x}}_{i}, \boldsymbol{\overline{b}}_{k}) / \sum_{l=1}^{s+b} \sigma^{1/\tau'}(\boldsymbol{\widetilde{x}}_{i}, \boldsymbol{\overline{b}}_{l}),$$

Self-Labeling Refinement : (1) self-labeling refinery; (2) momentum mixup

Self-labeling refinery iteratively employs network and data to improve labels during training.

• Step1. for query x_i , we use its positive \tilde{x}_i to estimate semantic similarity between x_i and instances in $\bar{B} = {\{\tilde{x}_i\}_{i=1}^s \cup {\{b_i\}_{i=1}^b}}$, since x_i and \tilde{x}_i come from the same image:

$$\boldsymbol{p}_{ik}^{t} = \sigma^{1/\tau'}(\boldsymbol{\widetilde{x}}_{i}, \boldsymbol{\overline{b}}_{k}) / \sum_{l=1}^{s+b} \sigma^{1/\tau'}(\boldsymbol{\widetilde{x}}_{i}, \boldsymbol{\overline{b}}_{l}),$$

• Step2. as \tilde{x}_i is highly similar to itself in \bar{B} , p_{ii}^t will be much larger than others and conceals the similarity of other semantically similar instances in \bar{B} . So we remove \tilde{x}_i from \bar{B}

$$\boldsymbol{q}_{ik}^{t} = \sigma^{1/\tau'}(\widetilde{\boldsymbol{x}}_{i}, \overline{\boldsymbol{b}}_{k}) / \sum_{l=1, l \neq i}^{s+b} \sigma^{1/\tau'}(\widetilde{\boldsymbol{x}}_{i}, \overline{\boldsymbol{b}}_{l}), \quad \boldsymbol{q}_{ii}^{t} = 0.$$

Self-Labeling Refinement : (1) self-labeling refinery; (2) momentum mixup

Self-labeling refinery iteratively employs network and data to improve labels during training.

• Step1. for query x_i , we use its positive \tilde{x}_i to estimate semantic similarity between x_i and instances in $\overline{B} = {\{\tilde{x}_i\}_{i=1}^s \cup {\{b_i\}_{i=1}^b}}$, since x_i and \tilde{x}_i come from the same image:

$$\boldsymbol{p}_{ik}^{t} = \sigma^{1/\tau'}(\widetilde{\boldsymbol{x}}_{i}, \overline{\boldsymbol{b}}_{k}) / \sum_{l=1}^{s+b} \sigma^{1/\tau'}(\widetilde{\boldsymbol{x}}_{i}, \overline{\boldsymbol{b}}_{l}),$$

• Step2. as \tilde{x}_i is highly similar to itself in \bar{B} , p_{ii}^t will be much larger than others and conceals the similarity of other semantically similar instances in \bar{B} . So we remove \tilde{x}_i from \bar{B}

$$\boldsymbol{q}_{ik}^{t} = \sigma^{1/\tau'}(\widetilde{\boldsymbol{x}}_{i}, \overline{\boldsymbol{b}}_{k}) / \sum_{l=1, l \neq i}^{s+b} \sigma^{1/\tau'}(\widetilde{\boldsymbol{x}}_{i}, \overline{\boldsymbol{b}}_{l}), \quad \boldsymbol{q}_{ii}^{t} = 0.$$

Linear combination:

$$\bar{\boldsymbol{y}}_i^t = (1 - \alpha_t - \beta_t) \boldsymbol{y}_i + \alpha_t \boldsymbol{p}_i^t + \beta_t \boldsymbol{q}_i^t,$$

Label-corrupted dataset

Let $\{(\boldsymbol{x}_i, \boldsymbol{y}_i^*)\}_{i=1}^n$ denote the pairs of crops and ground-truth semantic label

- crop \boldsymbol{x}_i generated from vanilla sample \boldsymbol{c}_t obeys $\|\boldsymbol{x}_i \boldsymbol{c}_t\|_2 \leq \varepsilon$
- ground-truth semantic label $y_i^* \in \{\gamma_t\}_{t=1}^K$ of x_i is decided by its corresponding
- the classes are separated: $|\gamma_i \gamma_k| \ge \delta$, $\|c_i c_k\|_2 \ge 2\varepsilon$, $(\forall i \ne k)$,
- for each sample c_i , at most ρn_i augmentations are assigned to wrong labels, where n_i denotes the crop sample number of c_i

Label-corrupted dataset

Let $\{(\boldsymbol{x}_i, \boldsymbol{y}_i^*)\}_{i=1}^n$ denote the pairs of crops and ground-truth semantic label

- crop x_i generated from vanilla sample c_t obeys $\|x_i c_t\|_2 \leq \varepsilon$
- ground-truth semantic label $y_i^* \in \{\gamma_t\}_{t=1}^K$ of x_i is decided by its corresponding
- the classes are separated: $|\gamma_i \gamma_k| \ge \delta$, $\|c_i c_k\|_2 \ge 2\varepsilon$, $(\forall i \neq k)$,
- for each sample c_i , at most ρn_i augmentations are assigned to wrong labels, where n_i denotes the crop sample number of c_i

Theorem 3 (exact label recovery guarantee, informal).

Under proper assumptions, the discrepancy between the label $ar{m{y}}^t$ estimated by our refinery and the true label y^* of data $\{x_i\}_{i=1}^n$ is bounded: estimated label $\frac{1}{\sqrt{n}} \| \mathbf{\bar{y}}^t - \mathbf{y}^* \|_2 \le \frac{1 - \alpha_t}{\sqrt{n}} \| \mathbf{y} - \mathbf{y}^* \|_2 + \alpha_t (6\rho + \zeta),$

true soft label

where $\zeta = c_6 \varepsilon K^2 \Gamma^5 \xi_3^3 \sqrt{\log K} / \lambda^2(C), \ \boldsymbol{y}^* = [\boldsymbol{y}_1^*, \cdots, \boldsymbol{y}_n^*]$

22

Theorem 3 (exact label recovery guarantee, informal).

Under proper assumptions, the discrepancy between the label \bar{y}^t estimated by our refinery and the true label y^* of data $\{x_i\}_{i=1}^n$ is bounded: estimated label

$$\frac{1}{\sqrt{n}} \| \mathbf{\bar{y}}^t - \mathbf{y}^* \|_2 \le \frac{1 - \alpha_t}{\sqrt{n}} \| \mathbf{y} - \mathbf{y}^* \|_2 + \alpha_t (6\rho + \zeta),$$

true soft label

where $\zeta = c_6 \varepsilon K^2 \Gamma^5 \xi_3^3 \sqrt{\log K} / \lambda^2(\boldsymbol{C}), \ \boldsymbol{y}^* = [\boldsymbol{y}_1^*, \cdots, \boldsymbol{y}_n^*]$

If $\rho \leq \frac{\delta}{24}$, $(1 - \alpha_0)|y_i - y_i^*| + \frac{1}{3}\alpha_0 \delta < \frac{1}{2}\delta$, the estimated label \bar{y}_i^t predicts true label of y_i^* any crop x_i

Exact label recovery: $\gamma_{k^*} = \boldsymbol{y}_i^*$ with $k^* = \operatorname{argmin}_{1 \le k \le \bar{K}} |\bar{\boldsymbol{y}}_i^t - \gamma_k|$.

Theorem 3 (exact prediction of network when using label refinery, informal) Under proper assumptions, by using the refined label \bar{y}^t to train network, the error of network prediction on $\{x_i\}_{i=1}^n$ is upper bounded predicted label

predicted label $\frac{1}{\sqrt{n}} \|f(\boldsymbol{W}_t, \boldsymbol{X}) - \boldsymbol{y}^*\|_2 \le 6\rho + \frac{\zeta\lambda(\boldsymbol{C})}{K\Gamma^2\xi_3^2},$ true label

where $\zeta = c_6 \varepsilon K^2 \Gamma^5 \xi_3^3 \sqrt{\log K} / \lambda^2(C), \ \boldsymbol{y}^* = [\boldsymbol{y}_1^*, \cdots, \boldsymbol{y}_n^*]$

If $\rho \leq \frac{\delta}{24}$, $(1 - \alpha_0)|y_i - y_i^*| + \frac{1}{3}\alpha_0 \delta < \frac{1}{2}\delta$, for any vanilla sample c_k , network $f(W_t, \cdot)$ predicts the true semantic label y_i^* of any augmentation x that obeys $||x - c_k||_2 \leq \varepsilon$:

Exact label prediction: $\gamma_{k^*} = \gamma_k$ with $k^* = \operatorname{argmin}_{1 \le i \le \overline{K}} |f(\boldsymbol{W}_t, \boldsymbol{x}) - \gamma_i|.$

Self-Labeling Refinement : (1) self-label refinery; (2) momentum mixup

Momentum mixup constructs virtual instance as follows:

 $\boldsymbol{x}_{i}^{\prime} = \theta \boldsymbol{x}_{i} + (1-\theta) \widetilde{\boldsymbol{x}}_{k}, \quad \boldsymbol{y}_{i}^{\prime} = \theta \bar{\boldsymbol{y}}_{i} + (1-\theta) \bar{\boldsymbol{y}}_{k}, \quad (1)$

where \tilde{x}_k is randomly sampled from the key set $\{\tilde{x}_i\}_{i=1}^s$, \bar{y}_i denotes the refined label by selflabeling refinery, $\theta \in [0, 1]$ obeys the beta distribution

Benefits: the component \tilde{x}_k in $x'_i = \theta x_i + (1 - \theta) \tilde{x}_k$ directly increases the similarity between the query x'_i and its positive key \tilde{x}_k in \bar{B}

momentum mixup can improve the accuracy of the label

Outline

Background: what is contrastive learning and why label is not accurate?

Solution: self-labeling refinery and momentum mixup

Experiments: higher classification accuracy

Conclusion

Outline

Motivation: why one-hot label in MoCo is not accurate?

Solution for accurate label: self-labeling refinery and momentum mixup

Experiments: higher classification accuracy

Conclusion

Experimental Results of Proposed NAS Method

CIFAR10 and ImageNet: much lower Top-1 error

Downstream tasks: higher performance on VOC classification and detection

Outline

Motivation: why one-hot label in MoCo is not accurate?

Solution for accurate label: self-labeling refinery and momentum mixup

Experiments: higher classification accuracy

Conclusion

Conclusion

• Problems:

(1) what relationship between one-hot label and the generalization performance?more precise of labels in contrastive learning, the better the generalization

(2) how to estimate more precise labels?

we propose self-labeling refinery and momentum mixup

Thanks!