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Problem Setup

Key steps in SGD & LookAhead (LA):
I 1) inner-loop optimization: K steps forward in SGD & LA
I 2) outer-loop optimization: 1 step back in LA, while no step back in SGD

Important observations: LookAhead (LA) enjoys better test performance than SGD

Problem:
I 1) Why LA enjoys better test performance than SGD?
I 2) How to further improve LA?

Tools for Test Performance Analysis

Optimal solution to empirical risk on dataset S:

θ∗S ∈ argminθ FS(θ) ,
1
n

∑n

i=1
`(f (x i;θ),y i),

Approximate solution to empirical risk when using algorithm A on dataset S:

θA,S ≈ argmin
θ

FS(θ) ,
1
n

∑n

i=1
`(f (x i;θ),y i)

Excess risk error to measure test performance:
εexc = EA,S[F (θA,S)]

test error
− EA,S[FS(θ∗S)]

best training error
= EA,S[F (θA,S)−FS(θA,S)]

generalization error
+EA,S[FS(θA,S)−FS(θ∗S)]

optimization error

where F (θ) , E(x ,y)∼D[`(f (x ;θ),y)] is the population risk.

Necessary definitions:

λ-strongly convex: ∀θ1,θ2, f (θ1)≥ f (θ2)+〈∇f (θ2),θ1− θ2〉+λ
2‖θ1− θ2‖2

convex: ∀θ1,θ2, f (θ1)≥ f (θ2)+〈∇f (θ2),θ1− θ2〉

G-Lipschitz continuous: ‖f (θ1)− f (θ2)‖2 ≤ G‖θ1− θ2‖2

L-smooth: ‖∇f (θ1)−∇f (θ2)‖2 ≤ L‖θ1− θ2‖2 (∀θ1,θ2)

Polyak-Łojasiewicz (PŁ) Condition: 2µ(f (θ)− f (θ∗))≤‖∇f (θ)‖2 (∀θ) where θ∗∈argminθ f (θ).

Weakly Quasi-Convexity: 〈∇f (θ),θ − θ∗〉≥ρ(f (θ)− f (θ∗))

Main Results

Excess risk error to measure test performance:
εexc = EA,S[F (θA,S)]

test error
− EA,S[FS(θ∗S)]

best training error
= EA,S[F (θA,S)−FS(θA,S)]

generalization error
+EA,S[FS(θA,S)−FS(θ∗S)]

optimization error

Convex problems. Under proper assumptions, by setting conventional learning rate
η = 1√

kT
, on convex problem we have

optimization error ≤ O
(

1
α
√

kT

)
, generalization error ≤ O

(
α
√

kT
n

)
where kT is total training iteration number, n is training sample number.

Remark: Since (1) optimum of α is α = O
(

1 ∩
√

n/kT
)

and (2) SGD = LA with α = 1

Lookahead enjoys smaller excess risk error (test error) than SGD

λ-strongly convex problems. Under proper assumptions, by setting conventional
learning rate η = 1√

kT
, on convex problem we have

optimization error ≤


O
( 1

T 2α +
1

λ2(kT )2α(1−2α)

)
, 0<α< 1

2,

O
(1

T + log(Tk)
λ2kT

)
, α = 1

2,

O
( 1

T 2α +
1

λ2(2α−1)kT

)
, 1

2<α≤1.
,

generalization error ≤ O

(
G2

nλ
(Tk + 1)α − 1
((T + 1)k + 2)α

)
.

When problem is large-scale and iteration number T is not large,
lnT
T α

> O
(

1
nλ

ln(Tk)
kα

)
and

1
λ(α− 1)2Tk

> O
(

1
n
ln(Tk)
T αkα

)
the optimum α is not 1.

Remark: This explains smaller excess risk error of LA over SGD.

Nonconvex problems under µ-PL condition. Under proper assumptions, we have

optimization error ≤ O

(
1

(Tk + 1)2α
+

2αLG2 (α + 2(1− α)(k − 1))
µ2(Tk + 1)2α−1

)
,

generalization error ≤ O
(

ξ

n − 1
α

1
1+γ(Tk)

γ
γ+1

)
.

where γ = (1− 1
n)
αL
µ and ξ = `

γ
1+γ
max

[
2G2

µ

] 1
1+γ

in which `max = maxθ,(x ,y) `(f (x ;θ),y).

Remark: with properly α, lookahead may have smaller test error than SGD

An Improved LookAhead: Stagewise Locally-regularized Lookahead

An Improved LookAhead: Stagewise Locally-regularized Lookahead

Strategy: divide optimization into several stages and use lookahead to solve
locally-regularized loss

Fq(θ)=FS(θ) +
βq

2
‖θ−θq−1‖2

2

Advantages:
I Local regularization improves loss convexity, e.g. ill-conditioned loss —¿

well-conditioned one
I Local regularization helps avoid overfitting

Optimization error. Under proper assumptions, to obtain optimization error
optimization error ≤ ε,

the stochastic gradient complexity (stochastic gradient evaluation number,
a.k.a. IFO) is

Remark: By observing factors α, λ and µ, SLRLA has smaller computational
complexity than LA, meaning

SLRLA has smaller optimization error than LA under a given
computational budget

Generalization error. Under proper assumptions, to obtain optimization
error

optimization error ≤ ε,

the generalization error is

Remark:
SLRLA has smaller generalization error than LA

Experiments

Remark: SLRLA has better test performance than stagewise LA (SLA)


