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Abstract
Stochastic variance-reduced gradient (SVRG) al-
gorithms have been shown to work favorably in
solving large-scale learning problems. Despite the
remarkable success, the stochastic gradient com-
plexity of SVRG-type algorithms usually scales
linearly with data size and thus could still be ex-
pensive for huge data. To address this deficiency,
we propose a hybrid stochastic-deterministic mini-
batch proximal gradient (HSDMPG) algorithm
for strongly-convex problems that enjoys provably
improved data-size-independent complexity guar-
antees. More precisely, for quadratic loss F (θ)
of n components, we prove that HSDMPG can at-
tain an ε-optimization-error E[F (θ)−F (θ∗)] ≤ ε
within O

(
κ1.5ε0.75 log1.5( 1

ε )+1

ε ∧
(
κ
√
n log1.5

(
1
ε

)
+

n log
(
1
ε

)))
stochastic gradient evaluations, where

κ is condition number. For generic strongly con-
vex loss functions, we prove a nearly identical
complexity bound though at the cost of slightly in-
creased logarithmic factors. For large-scale learn-
ing problems, our complexity bounds are superior
to those of the prior state-of-the-art SVRG algo-
rithms with or without dependence on data size.
Particularly, in the case of ε=O

(
1/
√
n
)

which
is at the order of intrinsic excess error bound of a
learning model and thus sufficient for generaliza-
tion, the stochastic gradient complexity bounds of
HSDMPG for quadratic and generic loss func-
tions are respectively O(n0.875 log1.5(n)) and
O(n0.875 log2.25(n)), which to our best knowl-
edge, for the first time achieve optimal generaliza-
tion in less than a single pass over data. Extensive
numerical results demonstrate the computational
advantages of our algorithm over the prior ones.
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1. Introduction
We consider the following `2-regularized empirical risk min-
imization (ERM) problem:

minθ∈Rd F (θ) :=
1

n

∑n

i=1
`(θ>xi,yi) +

µ

2
‖θ‖22, (1)

where {(xi,yi)}ni=1 is a training set; the convex loss func-
tion `(θ>xi,yi) measures the discrepancy between the lin-
ear prediction θ>xi and the ground truth yi; and the reg-
ularization term µ

2 ‖θ‖
2
2 aims at enhancing generalization

ability of the linear model. In the field of statistical learning,
the formulation (1) encapsulates a vast body of problems
including least squares regression, logistic regression and
softmax regression, to name a few. In this work, we focus
on developing scalable and autonomous first-order optimiza-
tion methods to solve this fundamental problem, which
has been extensively studied with a bunch of efficient algo-
rithms proposed including gradient descent (GD) (Cauchy,
1847), stochastic GD (SGD) (Robbins & Monro, 1951),
SDCA (Shalev-Shwartz, 2012), SVRG (Johnson & Zhang,
2013), Catalyst (Lin et al., 2015), SCSG (Lei & Jordan,
2017) and Katyusha (Allen-Zhu, 2017).

Motivation. Despite the remarkable success of the stochas-
tic gradient methods and their variance-reduced extensions,
the stochastic gradient evaluation complexity (which usu-
ally dominates the computational cost) of these algorithms
tends to scale linearly with data size n. Such a linear depen-
dence is not only expensive when data scale is huge but also
problematic in online and life-long learning regimes where
samples are coming infinitely. As pointed out in (Lei & Jor-
dan, 2017), there are situations in which accurate solutions
can be obtained with less than a single pass through the data,
e.g. for a large-scale dataset with similar and redundant sam-
ples. Therefore, developing data-size-independent learning
algorithms is of special importance in big data era.

Particularly, we are interested in efficiently optimizing prob-
lem (1) to its intrinsic excess error bound which typically
scales as O(1/

√
n). As shown in (Bottou & Bousquet,

2008), the excess error, which measures the expected pre-
diction discrepancy between the optimum model and the
learnt model over all possible samples and thus reflects the
generalization performance of the model, can be decom-
posed into model approximation error, estimation error and
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Table 1: Comparison of IFO complexity for first-order stochastic algorithms on the µ-strongly-convex problem (1) with
condition number κ. The solution θ with ε-optimization-error is measured by sub-optimality E [F (θ)−F (θ∗)]≤ ε with
optimum F (θ∗). Here we define a set of constants for quadratic (generic) loss: β1 =1.5 (2.25), β2 =1 (2), β3 =3 (4.5),
β4 = 1 (2.5), β5 = 1 (1.5), γ = 1.5 (2.25). These different constants only affects the logarithm factor ξ = log

(
1
ε

)
. For

brevity, we define Θ = κ1.5ξγ

ε0.25 + 1
ε . The third column summarizes the conditions under which HSDMPG has lower IFO

complexity than the compared algorithms.

ε-Optimization Error for ERM (1) 1√
n

-Optimization
IFO Complexity Better Zoom of HSDMPG Error for ERM (1)

SGD O
(

1
µε

)
¬ µ≤1&µκ1.5ε0.75ξβ1≤O(1) O (n)

or  O(n)≤ 1

µεξβ2
∧ 1

κ2µ2ε2ξβ3
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ε
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ε
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)
optimization error. Among them, the model approximation
error measures how closely the selected predication model
can approximate the optimal model; the estimation error
measures the prediction effects of minimizing the empirical
risk instead of the population risk; the optimization error
denotes the prediction difference between the exact and ap-
proximate solutions of ERM. Therefore, to achieve small
excess error, one should minimize the three terms jointly.
With optimal choice µ = O(1/

√
n) to balance empirical

risk and generalization gap, the estimation error is known to
be at the order of O(1/

√
n), which implies the excess error

is dominated by O(1/
√
n) (Vapnik, 2006; Shalev-Shwartz

et al., 2009; Shalev-Shwartz & Ben-David, 2014). Thus, it
is sufficient to optimize the regularized ERM problem (1)
to the optimization error O(1/

√
n) to match the optimal

excess error without redundant computation.

Overiew of our contribution. The main contribution of
this paper is a novel Hybrid Stochastic-Deterministic Mini-
batch Proximal Gradient (HSDMPG) algorithm with sub-
stantially improved data-size-independent complexity over
existing methods. For quadratic problems, the core idea of
our method is to recurrently convert the original large-scale
ERM problem into a series of minibatch proximal ERM
subproblems for efficient minimization and update. Specif-
ically, as a starting point, we uniformly randomly select a
minibach S of components of the risk function F to form a

stochastic approximation FS that will be fixed throughout
the algorithm iteration. Next, at each iteration step, we first
construct a stochastic surrogate of F by combining the Breg-
man divergence of FS at the current iterate and a first-order
hybrid stochastic-deterministic approximation of F ; and
then we invoke existing variance-reduced algorithms, such
as SVRG, to minimize this surrogate subproblem to desired
optimization error. For quadratic loss, we can provably es-
tablish sharper bounds of incremental first order oracle (IFO,
see Definition 2) for such a hybrid stochastic-deterministic
minibatch proximal update procedure in large-scale settings.
To extend the strong efficiency guarantee to generic strongly
convex losses, we propose to iteratively convert the non-
quadratic problem into a sequence of quadratic subproblems
such that the aforementioned method can be readily applied
for optimization. In this way, up to logarithmic factors,
HSDMPG still enjoys an identical sharp bound of IFO for
strongly convex problems.

Table 1 summarizes the computational complexity (mea-
sured by IFO) of HSDMPG and several representative base-
lines, including SGD (Robbins & Monro, 1951; Shamir,
2011), SVRG (Johnson & Zhang, 2013), SAGA (De-
fazio et al., 2014), APSDCA (Shalev-Shwartz & Zhang,
2014), APCG (Lin et al., 2014), SPDC (Zhang & Xiao,
2015), Catalyst (Lin et al., 2015), Varag (Lan et al., 2019),
AMSVRG (A. Nitanda, 2016), Katyusha (Allen-Zhu, 2017),
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SCSG (Lei & Jordan, 2017). In the following, we highlight
the advantages of our method over these prior approaches:

• To achieve ε-optimization-error, i.e. E[F (θ)−F (θ∗)]≤
ε, the IFO complexity of HSDMPG on problem (1) is
O
(
κ1.5ε0.75 logτ1( 1

ε )+1

ε ∧
(
κ
√
n logτ2

(
1
ε

)
+n logτ3

(
1
ε

)))
where τ1 = 1.5, τ2 = 1.5 and τ3 = 1 for quadratic
loss and τ1 = 2.25, τ2 = 2.5 and τ3 = 2 for generic
strongly convex loss. In comparison, the IFO complex-
ity bounds of all the compared algorithms except SGD
and SCSG scale linearly w.r.t. the data size n. As spec-
ified in the third column of Table 1, HSDMPG is supe-
rior to these algorithms in large-scale problem settings
which are of central interest in big data applications.
Compared with SGD, since in most cases, the condition
number κ is at the order of O(1/µ), HSDMPG im-
proves over SGD by a factor at least O

(
κ ∧ 1

κ0.5ε0.75

)
(up to logarithm factors). For SCSG, HSDMPG also
shows higher computational efficiency when (1) the
optimization error ε is small which corresponds to con-
ditions ¬ or  in Table 1; and (2) the data size n is
large which corresponds to condition ® in Table 1.

• For the practical setting where ε = O(1/
√
n)

which matches the optimal intrinsic excess error, HS-
DMPG has the IFO complexity O

(
n0.875log1.5(n)

)
for the quadratic loss and O

(
n0.875log2.25(n)

)
for

the generic strongly convex loss. By ignoring the
small logarithm term log(n), both complexities of HS-
DMPG are lower than the complexity bound O

(
n
)

of
SGD by a factor O

(
n0.125

)
. Similarly, HSDMPG re-

spectively improves over APCG and other remaining
algorithms, such as SVRG, Katyusha, Varag and SCSG,
by factors of O

(
n0.375

)
and O

(
n0.125

)
. These results

demonstrate the superior computational efficiency of
HSDMPG for attaining near-optimal generalization
rate of a statistical learning model.

2. Related Work
Stochastic gradient algorithms. Gradient descent (GD)
(Cauchy, 1847) method has long been applied to solve ERM
and enjoys linear convergence rate on strongly convex prob-
lems. But it needs to compute full gradient per iteration,
leading to huge computation cost on large-scale problems.
To improve efficiency, incremental gradient algorithms have
been developed via leveraging the finite-sum structure and
have witnessed tremendous progress recently. For instance,
SGD (Robbins & Monro, 1951; Bottou, 1991) only eval-
uates gradient of one (or a minibatch) randomly selected
sample at each iteration, which greatly reduces the cost of
each iteration and shows more appealing efficiency than GD
on large-scale problems (Shamir, 2011; A. Nitanda, 2016;
Hendrikx et al., 2019; Mohammadi et al., 2019). Along

this line of research, a variety of variance-reduced variants,
such as SVRG (Johnson & Zhang, 2013), SAGA (Defazio
et al., 2014), APSDCA (Shamir, 2011), AMSVRG (A. Ni-
tanda, 2016), SCSG (Lei & Jordan, 2017), Catalyst (Lin
et al., 2015), Katyusha (Allen-Zhu, 2017), Varag (Lan et al.,
2019), are developed and have delivered exciting progress
such as linear convergence rates on strongly convex prob-
lems as opposed to sublinear rates of vanilla SGD (Shamir,
2011). The hybrid stochastic-deterministic gradient descent
method (Friedlander & Schmidt, 2012; Zhou et al., 2018a;b;
Mokhtari et al., 2016; Mokhtari & Ribeiro, 2017) itera-
tively samples an evolving minibatch of samples for gradi-
ent estimation or subproblem construction and works favor-
ably in reducing the computational complexity. Our HS-
DMPG method differs significantly from these prior algo-
rithms. Based on the Bregman-divergence of the minibatch
function and a hybrid stochastic-deterministic first-order ap-
proximation of the original function, HSDMPG constructs
a variance-reduced minibatch proximal function which is
provably more efficient. Moreover, HSDMPG can em-
ploy any off-the-shelf algorithms to solve the constructed
sub-problems in the inner loop and thus is flexible for im-
plementation. HSDMPG shares a similar spirit with the
DANE method (Shamir et al., 2014) which also uses a
local Bregman-divergence-based function approximation
for communication-efficient distributed quadratic loss op-
timization. The main difference lies in the way of con-
structing first-order approximation of the risk function: HS-
DMPG employs a novel hybrid stochastic-deterministic
approximation strategy which is substantially more efficient
than the deterministic strategy as used by DANE.

Generalization and optimization. In the seminal work
of Bottou & Bousquet (2008), it has been demonstrated
that the excess error that measures the generalization per-
formance of an ERM model over a function class can be
decomposed into three terms in expectation: an approxi-
mation error that measures how accurate the function class
can approximate the underlying optimum model; an esti-
mation error that measures the effects of minimizing ERM
instead of population risk; and an optimization error that
represents the difference between the exact solution and
the approximate solution of ERM. Particularly, for the `2-
regularized convex ERM with linear models as in (1), its
estimation error (or excess risk) has long been studied with
a vast body of deep theoretical results established (Shalev-
Shwartz & Ben-David, 2014; Hardt et al., 2016; Bach &
Moulines, 2013; Dieuleveut et al., 2017; Zhou & Feng,
2018a;b). A simple yet powerful tool for analyzing esti-
mation error is the stability of an estimator to the changes
of training dataset (Bousquet & Elisseeff, 2002). The `2-
regularized convex ERM has been shown to have uniform
stability of order O(1/(µn)) (Bousquet & Elisseeff, 2002),
which then gives rise to the optimal choice µ = O(1/

√
n)
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to balance empirical loss and generalization gap to achieve
estimation error O(1/

√
n) (Shalev-Shwartz et al., 2009;

Feldman & Vondrak, 2019). This implies that the overall
excess error is dominated by O(1/

√
n). In this sense, it

suffices to solve the `2-regularized ERM to optimization
error O(1/

√
n) to match the intrinsic excess error.

3. Hybrid Stochastic-Deterministic Minibatch
Proximal Gradient

In this section, we first introduce the hybrid stochastic-
deterministic minibatch proximal gradient (HSDMPG) al-
gorithm for quadratic loss function along with convergence
rate and computational complexity analysis. Then, we
extend HSDMPG and its theoretical analysis to generic
strongly convex loss functions.

3.1. The HSDMPG method for quadratic loss

3.1.1. ALGORITHM

The HSDMPG method is outlined in Algorithm 1. The
initial step is to randomly sample a minibatch S of data
points of size s to construct a stochastic approximation

FS(θ) =
1

s

∑
i∈S

`(θ>xi,yi) +
µ

2
‖θ‖22 (2)

to the original risk functionF (θ) in problem (1). FS(θ) will
be fixed throughout the computational procedure to follow.
Then in the iteration loop the algorithm iterates between two
steps of S1 and S2. In step S1, we uniformly randomly sam-
ple a size increasing minibatch St of samples to estimate
an inexact function FSt(θ) = 1

|St|
∑
i∈St `(θ

>xi,yi) +
µ
2 ‖θ‖

2
2. Let Dg(θ1,θ2) = g(θ1)− g(θ2)− 〈∇g(θ2),θ1−

θ2〉 denote the Bregman divergence of a function g. Based
on FS(θ) and FSt(θ), we construct a variance-reduced
minibatch proximal objective P̃t−1(θ) to approximate the
objective F (θ) in (1), where P̃t−1(θ) ,

FSt(θt−1) + 〈∇FSt(θt−1),θ − θt−1〉+DF̃S (θ,θt−1).

Here DF̃S (θ,θt−1) is the Bregman divergence of a regu-

larized loss F̃S(θ) = FS(θ) + γ
2 ‖θ‖

2
2 which essentially

measures the distance between θt and θt−1 on the current
geometry curve estimated on F̃S(θ). We define the next
iterate as

θt = arg minθ P̃t−1(θ) = arg minθ Pt−1(θ), (3)

where Pt−1(θ) ,

FS(θ) + 〈∇FSt(θt−1)−∇FS(θt−1),θ〉+ γ

2
‖θ− θt−1‖22.

In Pt−1, its finite-sum structure comes from the initial
stochastic approximation FS(θ) and its gradient at θt−1.

Algorithm 1 Hybrid Stochastic-Deterministic Minibatch
Proximal Gradient (HSDMPG) for quadratic loss.

Input: initialization θ0, regularization constant γ in (3),
optimization error εt.
Initialization: Uniformly randomly sample a data batch
S of size s to form FS(θ) in (2).
for t = 1, 2, . . . , T do

(S1) Uniformly randomly sample a minibatch St to
form FSt(θ) = 1

|St|
∑
i∈St`(θ

>xi,yi) + µ
2 ‖θ‖

2
2 and

compute∇FSt(θt−1) to construct loss Pt−1(θ) in (3).
(S2) Optimize the subproblem (3), e.g. via SVRG, to
obtain θt that satisfies ‖∇Pt−1(θt)‖2 ≤ εt.

end for
Output: θT .

Since along with more iterations, the size of St increases
which indicates that the loss Pt−1 is a variance-reduced loss
and will converge to the original loss F (θ) in problem (1).
Then in step S2, we approximately solve problem (3) via a
stochastic gradient optimization method such as SVRG. The
principle behind this strategy is that for the initial optimiza-
tion progress, inexact gradient already can well decrease
the loss since the current solution is far from the optimum,
while along more iterations, the current solution becomes
closer to optimum, requiring more accurate gradient for
further reducing the loss function. In this way, our pro-
posed method can well balance the converge speed and the
computational cost at each iteration and thus has the poten-
tial to achieve improved overall computational efficiency.
Shamir et al. (2014) has proposed the DANE method which
uses a similar local Bregman divergence based regulariza-
tion for distributed quadratic optimization problems. Our
method improves upon DANE in two aspects: 1) we use
variance-reduction techniques to reduce the overall compu-
tational complexity, and 2) HSDMPG is applicable not only
to quadratic problems but also to generic strongly convex
problems with about the same computational complexity as
discussed in Sec. 3.2.

3.1.2. CONVERGENCE AND COMPLEXITY ANALYSIS

We first introduce two necessary definitions, namely strong
convexity and Lipschitz smoothness, which are conven-
tionally used in the analysis of convex optimization meth-
ods (Shamir, 2011; Johnson & Zhang, 2013).
Definition 1 (Strong Convexity and Smoothness). A differ-
entiable function g(θ) is said to be µ-strongly-convex and
L-smooth if ∀θ1,θ2, it satisfies

µ

2
‖θ1 − θ2‖22 ≤ Dg(θ1,θ2) ≤ L

2
‖θ1 − θ2‖22.

where Dg(θ1,θ2) = g(θ1)− g(θ2)− 〈∇g(θ2),θ1 − θ2〉.

For brevity, let H be the Hessian matrix of the quadratic
function F (θ) and `i(θ) = `(θ>xi,yi) + µ

2 ‖θ‖
2
2. Denote
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‖θ‖H =
√
θ>Hθ. In the analysis to follow, we always

suppose that ‖xi‖ ≤ r,∀i, which generally holds for natural
data analysis, e.g., in computer vision and signal processing.
We summarize our main result in Theorem 1 which shows
the linear convergence rate of HSDMPG for quadratic prob-
lems. See proof in Appendix B.1.

Theorem 1. Assume each loss `(θ>xi,yi) is
quadratic and L-smooth w.r.t. θ>xi, and supθ

1
n

∑n
i=1

‖H−1/2(∇F (θ) − ∇`i(θ))‖22 ≤ ν2. By setting γ =

(
√

log(d) +
√

2)Lr2/
√
s, εt = µ1.5

4(µ+2γ) exp
(
− µ(t−1)

2(µ+2γ)

)
,

|St| = 16ν2(µ+2γ)2

µ2 exp
(

µt
2(µ+2γ)

)
∧ n, where d is the

problem dimension, the sequence {θt} produced by
Algorithm 1 satisfies

E[F (θt)−F (θ∗)] = 1
2E[‖θt−θ∗‖2H ] ≤ ζ exp

(
− µt
µ+2γ

)
,

where ζ= 1
2

(
‖θ0−θ∗‖H+ 1

2

)2
+ 5

8 .

The main message conveyed by Theorem 1 is that HS-
DMPG enjoys linear convergence rate on the quadratic loss
when we use evolving size of the minibatch St. Note here
we only assume each loss `(θ>xi,yi) is L-smooth w.r.t.
θ>xi. This assumption is much milder than the smoothness
assumption on the function F (θ) w.r.t. θ which is used in
other algorithm analysis, such as SGD and SVRG. The as-
sumption that supθ

1
n

∑n
i=1 ‖H−1/2(∇F (θ)−∇`i(θ))‖22

≤ ν2 in HSDMPG is mild, which requires the variance
of stochastic gradient under the Hessian matrix is bounded.
Such an assumption is analogous to the one used in analysis
of SGD that imposing the bounded-variance assumption on
stochastic gradient, namely, 1

n

∑n
i=1 ‖∇F (θ)−∇`i(θ)‖22.

Based on this result, we further analyze the computational
complexity of HSDMPG to better understand its overall ef-
ficiency in computation. At each iteration, we use the SVRG
method solve the inner-loop subproblem (3) because it only
accesses the first-order information of the objective function
and is efficient. Following (Johnson & Zhang, 2013; Zhang
& Xiao, 2015; Zhou et al., 2019; Shen et al., 2019), we
employ the incremental first order oracle (IFO) complex-
ity as the computation complexity metric for solving the
finite-sum solving problem (1).

Definition 2. An IFO takes an index i ∈ [n] and a point
(xi,yi), and returns the pair (`i(θ),∇`i(θ)).

The IFO complexity can accurately reflect the overall com-
putational performance of a first-order algorithm, as ob-
jective value and gradient evaluation usually dominate the
per-iteration complexity. Based on these preliminaries, we
summarize our main result on the computation complex-
ity of HSDMPG in Corollary 1 with proof provided in
Appendix B.2.

Corollary 1 (Computation complexity of HSDMPG for
quadratic loss). Suppose that the assumptions in Theo-

rem 1 hold and the inner-loop subproblems are solved
via SVRG, then the IFO complexity of HSDMPG on the
quadratic loss to achieve E[F (θt) − F (θ∗)] ≤ ε is of the

orderO
((

1+ κ3 log1.5(d)
s1.5

)
ν2

ε

∧(
1+ κ log0.5(d)

s0.5

)
n log

(
1
ε

)
+

κ
√
s log(d) log2

(
1
ε

))
, where κ = L/µ denotes the condi-

tional number.

According to Corollary 1, by choosing s as s =
κν log0.5(d)
ε0.5 log(1/ε) ∧ n or s = n

log(1/ε) and ignoring the constant ν
and the logarithm factor log(d) of the problem dimension d,
the IFO complexity of HSDMPG is at the order of

O
(κ1.5ε0.75 log1.5( 1

ε ) + 1

ε
∧
(
κ
√
nlog1.5

(1

ε

)
+nlog

(1

ε

)))
.

One may compare such a complexity with the state-of-the-
arts listed in Table 1. Compared with those algorithms in
the table whose IFO complexity scales linearly with the data
size n, e.g. SVRG, APCG, Katyusha and AMSVRG, the
proposed HSDMPG has data-size-independent IFO com-
plexity and can outperform them for large-scale learning
problems where the data size n could be huge. To be more
precise, the third column of Table 1 summarizes the condi-
tions under which HSDMPG outperforms these algorithms
in terms of computational complexity. For the algorithms
whose IFO complexity does not depend on n, namely SGD
and SCSG, HSDMPG also enjoys substantially lower com-
plexity in most cases. Concretely, since κ is typically at the
order of O

(
1/µ

)
, when κ ≤ ε1.5 which holds for moder-

ately larger κ, HSDMPG improves over SGD by a factor at
least O

(
κ ∧ 1

κ0.5ε0.75

)
(up to the logarithmic factor). As for

SCSG, HSDMPG also achieves higher efficiency when (1)
the optimization error is small which corresponds to condi-
tions ¬ in the third column of Table 1, (2) the sampler size
n is large which corresponds to condition . These results
show that HSDMPG is well suited for solving large-scale
learning problems.

From the perspective of generalization, we are particu-
larly interested in the computational complexity of HS-
DMPG for optimizing the `2-ERM model (1) to its intrin-
sic excess error bound which characterizes the generaliza-
tion performance of the model. As reviewed in Section 2,
the excess error of the considered `2-ERM model is typi-
cally of order O(1/

√
n). Accordingly, one only needs to

solve the optimization problem to the optimization error
ε = O(1/

√
n) (Bottou & Bousquet, 2008; Shalev-Shwartz

et al., 2009). Moreover, to accord with this intrinsic excess
error bound, the regularization constant µ should also be at
the order of O( 1√

n
). In this way, the condition number κ

could scale as large as O(
√
n). Based on these results and

Corollary 1, we can derive the IFO complexity bound of
HSDMPG for this case in Corollary 2.

Corollary 2. Suppose that the assumptions in Corol-
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Algorithm 2 Hybrid Stochastic-Deterministic Minibatch
Proximal Gradient (HSDMPG) on the generic loss.

Input: Regularization constant γ and initialization θ0.
for t = 1, 2, . . . , T do

(S1) Construct a finite-sum quadratic functionQt−1(θ)
in Eqn. (4) to approximate F (θ) at θt−1.
(S2) Run Algorithm 1 with regularization constant γ
and initialization θt−1 to minimize the finite-sum func-
tionQt−1(θ) such thatQt−1(θt)≤minθQt−1(θ)+ε′t.

end for
Output: θT .

lary 1 hold. By setting s = O
(νn0.75log0.5(d)

log(n)

)
, the

IFO complexity of HSDMPG on the quadratic loss to
achieve E[F (θt) − F (θ∗)] ≤ 1√

n
is at the order of

O
(
ν0.5n0.875log0.75(d)log1.5(n) + ν2n0.5

)
.

See its proof in Appendix B.3. From Corollary 2, one
can observe that the IFO complexity of HSDMPG for
quadratic problems is at the order of O

(
n0.875 log1.5 (n)

)
.

It means that HSDMPG can reach the intrinsic excess error
O
(
1/
√
n
)

with strictly less than a single pass over the entire
training dataset. In comparison, we can observe from Table 1
that in the same practical setting, SGD and APCG have IFO
complexity O (n) and O

(
n1.25 log(n)

)
respectively. By

ignoring the logarithm factor log(n) which is much smaller
than n for large-scale learning problems, HSDMPG im-
proves over these two methods by factors O

(
n0.125

)
and

O
(
n0.375

)
, respectively. The IFO complexity of all other

algorithms in Table 1, including SVRG, SCSG, SPDC, APS-
DCA, AMSVRG, Catalyst, Katyusha and Varag, are all at
the order of O (n log (n)). Similarly, by ignoring the loga-
rithmic factors, HSDMPG has lower IFO complexity than
these algorithms by a factor O

(
n0.125

)
. To summarize this

group of results comparison, HSDMPG would be signif-
icantly superior to all these state-of-the-arts when solving
quadratic optimization problems to intrinsic excess error.

3.2. Algorithm for generic convex loss function

The computational complexity guarantees established in
the previous section are only applicable to quadratic loss
function. In order to extend these results to non-quadratic
convex loss function, we apply a quadratic approxima-
tion strategy to convert the original non-quadratic problem
into a sequence of quadratic optimization sub-problems
such that each of the subproblem can be optimized by
HSDMPG. More specifically, suppose that the loss func-
tion `(θ>x,y) is twice differentiable w.r.t. θ>x and is
L-smooth w.r.t. θ>x. Then we can verify that ∇2F (θ) =
1
n

∑n
i=1 `

′′(θ>xi,yi)xix
>
i +µI � H̄ , L

n

∑n
i=1 xix

>
i +

µI for all θ. Therefore, at each iteration, we construct an
upper bound of the second-order Taylor expansion of F at

θt−1 as expressed byQt−1(θ) ,

F (θt−1)+〈∇F (θt−1),θ−θt−1〉+∆t−1(θ), (4)

where ∆t−1(θ) = 1
2 (θ − θt−1)>H̄(θ − θt−1). The

finite-sum structure inQt−1(θ) comes from∇F (θt−1) =
1
n

∑n
i=1∇`(θ>xi,yi) + µθ and H̄ . Thus we can esti-

mate θt by applying HSDMPG to the quadratic function
Qt−1(θ) with a warm-start initialization θt−1 such that

Qt−1(θt) ≤ minθQt−1(θ) + ε′t. (5)

The above nested-loop computation procedure is sum-
marized in Algorithm 2. We remark that when comput-
ing the gradient of Qt−1(θ), we can compute the gradi-
ent associated with H̄ at the point θ as H̄(θ − θt−1) =
L
n

∑n
i=1(x>i (θ − θt−1))xi + µ(θ − θt−1) which only

computes the inner-product x>i (θ − θt−1) without explic-
itly computing H̄ . In this way, the computational cost
of each stochastic gradient associated with H̄ is actually
much cheaper than that of computing stochastic gradient of
∇F (θt−1), since the former only involves vector products
and the later one is usually complicated, e.g. involving the
exponential computation in logistic regression. Then we
establish Theorem 2 to guarantee the convergence of Al-
gorithm 2 and analyze its computational complexity. See
Appendix C.1 for a proof of this main result.

Theorem 2 (Convergence rate and computation complex-
ity of HSDMPG for generic loss). Suppose that each loss
function `(θ>x,y) is L-smooth and σ-strongly convex w.r.t.
θ>x. By setting ε′t = σ

2L exp
(
− σ

2L t
)
, the sequence {θt}

produced by Algorithm 2 satisfies

F (θt)− F (θ∗) ≤ exp
(
− σt

2L

)(
1 + F (θ0)− F (θ∗)

)
.

Suppose the assumptions in Corollary 1 hold. Then
by setting κ = L

µ the IFO complexity of Algorithm 2
to achieve E [F (θt)− F (θ∗)] ≤ ε is at the order of

O
((

1+ κ3 log1.5(d)
s1.5

)
Lν2

σε

∧(
1+ κ log0.5(d)

s0.5

)
L3n
σ3 log2

(
1
ε

)
+

L2
√
s log(d)

σµ log3
(
1
ε

) )
.

Theorem 2 suggests that the objective F (θt) converges lin-
early to the optimum F (θ∗) with rate exp(− σ

2L ). Note that
σ is the strong convexity parameter of the loss function
`(θ>x,y) w.r.t. θ>x instead of θ which is usually not re-
lying on data scale for widely used loss functions such as
the logistic loss (Yuan & Li, 2019) and thus leads to fast
outer-loop convergence rate. In contrast, the strong convex-
ity parameter µ of the risk function F is typically set at the
order of O

(
1/
√
n
)

so as to match the intrinsic excess error.

In terms of computational complexity, by choosing the
proper value of s from s = νκ log0.5(d)

ε0.5 log1.5(1/ε)
∧ n and s =
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Figure 1: Single-epoch processing: stochastic gradient algorithms process data a single pass on quadratic problems.
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Figure 2: Multi-epoch processing: stochastic gradient algorithms process data multiple pass on quadratic problems.

µLκn
σ2 log(1/ε) ∧ n in Algorithm 1, the IFO complexity of HS-
DMPG for generic convex loss can be shown to scale as

O
(κ1.5ε0.75log2.25( 1

ε )+1

ε
∧
(
κ
√
n log2.5

(1

ε

)
+n log2

(1

ε

)))
Compared with the methods listed in Table 1, one can
observe that for generic strongly convex problems, HS-
DMPG enjoys lower computational complexity than all the
compared algorithms except SGD and SCSG for large-scale
learning problems where the sample number n is sufficiently
large to satisfy the conditions in the third column of Table 1.
Similar to the results on quadratic loss, HSDMPG improves
over SGD by a factor at least O

(
κ ∧ 1

κ0.5ε0.75

)
. So when

the optimization error ε is very small or the condition num-
ber κ is large, HSDMPG will be much more efficient than
SGD. For SCSG, HSDMPG is of higher efficiency in two
regimes, namely (1) the optimization error is small which
corresponds to conditions ¬ or  in Table 1, and (2) the
sampler number n is large which corresponds to condition
®. These results show the advantages HSDMPG in solving
large-scale strongly-convex learning problems.

Finally we consider a realistic case where the optimiza-
tion error of problem (1) matches the intrinsic excess error

bound O(1/
√
n). For this case, as discussed at the end of

Section 3.1.2 that the regularization parameter should be set
at the scale of µ = O(1/

√
n) with balanced impact against

the guarantees on estimation error. As a result, the condition
number κ could scale as large as O(

√
n). The following

corollary substantializes the IFO complexity bound in The-
orem 2 to such a setting. See Appendix C.2 for a proof of
this result.

Corollary 3. Suppose the assumptions in Theorem 2
hold. By setting s = O

(νn0.75log0.5(d)
log(n)

)
, the

IFO complexity of HSDMPG on the generic loss
to achieve E[F (θt) − F (θ∗)] ≤ 1√

n
is of order

O
(
ν0.5n0.875log0.75(d)log2.25(n) + ν2n0.5

)
.

Corollary 3 shows that for generic convex loss, the IFO
complexity of HSDMPG to attain the O

(
1/
√
n
)

intrinsic
excess error is of the order O

(
n0.875 log2.25 (n)

)
. This

shows that HSDMPG is able to achieve nearly optimal gen-
eralization with less than a single pass over data. Compared
with the complexity bound for the quadratic loss, such a
more general IFO complexity bound of HSDMPG only
comes at the cost of a slightly increased overhead on the
logarithmic factor, i.e., from log1.5(n) for the quadratic case
to the log2.25(n) for generic convex loss. Similar to the ob-
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Figure 3: Multi-epoch processing (about 8 epochs): stochastic gradient algorithms process data multiple pass on logistic
regression problems (ijcnn and w08) and softmax regression problems (protein and letter).

servations in the quadratic case, from results in Table 1 one
can observe that all the considered state-of-the-art methods
need to process the entire data at least one pass to achieve
the desired optimization error for generic convex loss. All
in all, the established theoretical results for both quadratic
and non-quadratic loss functions showcase the benefit of
HSDMPG for efficient optimization of large-scale learning
problems with near-optimal generalization.

4. Experiments
In this section, we carry out experiments to compare the
numerical performance of HSDMPG with several represen-
tative stochastic gradient optimization algorithms, includ-
ing SGD (Robbins & Monro, 1951), SVRG (Johnson &
Zhang, 2013), APCG (Lin et al., 2014), Katyusha (Allen-
Zhu, 2017) and SCSG (Lei & Jordan, 2017). We evaluate
all the considered algorithms on two sets of strongly-convex
learning tasks. The first set is for ridge regression with
least squared loss `(θ>xi,yi) = 1

2‖θ
>xi − yi‖22, where

yi is the target output of sample xi. In the second set-
ting we consider two classification models: logistic regres-
sion with loss `(θ>xi,yi) = log

(
1 + exp(−yiθ>xi)

)
and multi-class softmax regression with k-classification loss

`(θ>xi,yi) =
∑k
j=1 1{yi = j} log

(
exp(θ>j xi)∑k
s=1 exp(θ>s xi)

)
.

We run simulations on ten datasets whose details are de-
scribed in Appendix D.4. For HSDMPG, we set the size
s of S around n0.75. For the minibatch for inner problems,
we set initial minibatch size |S1| = 50 and then follow
our theory to exponentially expand size of St with proper
exponential rate. The regularization constant in the sub-
problem (3) is set to be γ=

√
log(d)/s as suggested by our

theory. The optimization error εt in (3) is controlled by re-
spectively allowing SVRG to run 3 epochs and 10 epochs on
the two sets of tasks. Similarly, we control the optimization
error ε′t in (5) by running SVRG with 3 epochs. Since there
is no ground truth on real data, we run FGD sufficiently long
until ‖∇F (θ̃)‖2≤10−10 and take F (θ̃) as an approximate
optimal value F (θ∗) for sub-optimality estimation.

4.1. Results for the quadratic loss

Single-epoch evaluation results. Here we first evaluate
well-conditioned quadratic problems such that moderately
accurate solution can be obtained after only one epoch
of data pass. Such a one epoch setting usually occurs in
online learning. Towards this goal, we set the regulariza-
tion parameter µ = 0.01 to make the quadratic problems
well-conditioned. From Figure 1, one can observe that
HSDMPG exhibits much sharper convergence behavior
than the considered baselines, though most algorithms can
achieve small optimization error after one epoch processing
of data. This confirms the theoretical predictions in Corol-
laries 1 and 2 that HSDMPG is cheaper in IFO complexity
than SGD and variance-reduced algorithms, e.g. SVRG and
SCSG, when the data scale is large.

Multi-epoch evaluation results. For more challenging
problems, an algorithm usually requires multiple cycles
of data processing to achieve accurate optimization. Here
we reset the regularization strength parameter in quadratic
problems as µ = 10−4 for generating more challenging opti-
mization tasks. As shown in Figure 2, one can again observe
that HSDMPG converges faster than all the compared algo-
rithms in terms of IFO complexity. Particularly, we compare
both IFO complexity and wall-clock running time on the let-
ter and rcv11 datasets. The convergence curves under these
two metrics consistently show the superior computational ef-
ficiency of HSDMPG to the considered state-of-the-arts on
large-scale learning tasks, which well support the theoretical
predictions in Corollaries 1 and 2.

4.2. Results for the non-quadratic loss

Finally, we investigate the convergence performance of the
proposed HSDMPG on non-quadratic convex loss func-
tions. Specifically, we evaluate all the compared algorithms
on logistic regression and its multi-classes version, i.e. soft-
max regression, in which their regularization modulus pa-
rameters are set as µ = 0.01. Figure 3 reports the run-
ning time evolving curves which can accurately reflects
the efficiency of an algorithm. These results show that
HSDMPG converges significantly faster than the baseline
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algorithms for the considered non-quadratic loss functions,
which well support the predictions in Theorem 2 and Corol-
lary 3 that HSDMPG has lower IFO complexity than the
state-of-the-arts in the regimes where data scale is large.
This set of results also demonstrates the effectiveness of our
sequential quadratic-approximation approach for extend-
ing the attractive computational complexity guarantees on
quadratic loss to generic convex loss.

5. Conclusions
We proposed HSDMPG as a hybrid stochastic-deterministic
minibach proximal gradient method for `2-regularized ERM
problems. For quadratic loss, we showed that HSDMPG en-
joys provably lower computational complexity than prior
state-of-the-art SVRG algorithms in large-scale settings.
Particularly, to attain the optimization error ε=O

(
1/
√
n
)

at the order of intrinsic excess error bound of ERM which
is sufficient for generalization, the stochastic gradient com-
plexity of HSDMPG is dominated by O(n0.875) (up to
logarithmic factors). To our best knowledge, HSDMPG for
the first time achieves nearly optimal generalization in less
than a single pass over data. Almost identical computa-
tional complexity guarantees hold for an extension of HS-
DMPG to generic strongly convex loss functions via sequen-
tial quadratic approximation. Extensive numerical results
demonstrate the substantially improved computational effi-
ciency of HSDMPG over the prior methods. We expect that
the algorithms and computational learning theory developed
in this paper for `2-regularized ERM can be extended to
stochastic convex optimization problems. Also, it is worth-
while to explore the opportunity of using first-order accel-
eration techniques to further improve the computational
complexity guarantees of HSDMPG.
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Hybrid Stochastic-Deterministic Minibatch Proximal Gradient:
Less-Than-Single-Pass Optimization with Nearly Optimal Generalization

(Supplementary File)

This supplementary document contains the technical proofs of convergence results and some additional numerical
results of the paper entitled “Hybrid Stochastic-Deterministic Minibatch Proximal Gradient: Less-Than-Single-
Pass Optimization with Nearly Optimal Generalization”. It is structured as follows. Appendix A first present
several auxiliary lemmas which will be used for subsequent analysis and whose proofs are deferred to Appendix D.
Then Appendix B gives the proofs of the main results in Sec. 3.1, including Theorem 1 which analyzes convergence
rate of HSDMPG and Corollaries 1 and 2 which analyze the IFO complexity of HSDMPG on the quadratic
problems. Next, Appendix C provides the proofs of the results in Sec. 3.2, including Theorem 2 which proves the
convergence rate of HSDMPG and analyzes its IFO complexity for generic problems, and Corollary 3 which
gives the IFO complexity of HSDMPG to achieve the intrinsic excess error bound. Then in Appendix D we
present the proofs of auxiliary lemmas in Appendix A, including Lemmas 1 ∼ 3. Finally, more details of the
testing datasets used in the manuscript are presented in Appendix D.4.

A. Some Auxiliary Lemmas
Here we introduce auxiliary lemmas which will be used for proving the results in the manuscript. For the sake of readability,
we defer the proofs of some lemmas into Appendix D. The following elementary lemma will be used frequently throughout
our analysis.
Lemma 1. Assume that the loss F (θ) is a µ-strongly convex loss, supθ

1
n

∑n
i=1 ‖H−1/2(∇F (θ) − ∇`i(θ))‖22 ≤ ν2.

Suppose rt−1 = ∇F (θt−1)− gt−1 where gt−1 = ∇FSt(θt−1). Then by setting

|St| =
16ν2(µ+ 2γ)2

µ2
exp

(
µt

µ+ 2γ

)∧
n,

we have

E
[
‖H−1/2rt‖2

]
≤ µ2

16(µ+2γ)2
exp

(
− µt

µ+2γ

)
, E

[
‖H−1/2rt‖

]
≤ µ

4(µ+2γ)
exp

(
− µt

2(µ+2γ)

)
.

See its proof in Appendix D.1.
Lemma 2. SupposeH andHS respectively denote the Hessian matrix of F (θ) and FS(θ) in problem (1). w.l.o.g., suppose
‖xi‖ ≤ r (i = 1, · · · , n) and `(θ>x,y) is L-smooth w.r.t. θ>x. Then we have

ES
[
‖HS −H‖2

]
≤

(
√

log(d) +
√

2)2L2r4

s
and ES [‖HS −H‖] ≤

(
√

log(d) +
√

2)Lr2√
s

,

where s is the size of S.

see its proof in Appendix D.2
Lemma 3. LetA andB be two symmetric and positive definite matrices andB � µI for some µ > 0. If ‖A−B‖ ≤ γ,
then (A+ γI)−1B is diagonalizable and

µ

µ+ 2γ
≤
∥∥∥B1/2(A+ γI)−1B1/2

∥∥∥ ≤ 1.

Moreover, the following spectral norm bound holds:

‖I −B1/2(A+ γI)−1B1/2‖ ≤ 2γ

µ+ 2γ
.

See its proof in Appendix D.3.
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B. Proofs for the Results in Section 3.1
We collect in this appendix section the technical proofs of the results in Section 3.1 of the main paper.

B.1. Proof of Theorem 1

Proof. This proof has four steps. To begin with, for brevity, let ut = H1/2(θt − θ∗). In the first step, we establish the
relation between ut and ut−1 which will be widely used for subsequent proof. Since for quadratic problems, we have
E[F (θt)−F (θ∗)] = 1

2E[‖θt− θ∗‖2H ]. So here we aim to upper bound E[‖θt− θ∗‖2H ] first, and then use it to upper bound
E[F (θt) − F (θ∗)]. To bound the second-order moment E[‖θt − θ∗‖2H ], we need to first bound its first-order moment
E[‖θt − θ∗‖H ]. So in the second step, we use the result in the first step to upper bound E[‖θt − θ∗‖H ]. Then in the third
step, we upper bound E[‖θt − θ∗‖2H ]. Finally, we can use above result to upper bound the loss. Please see the proof steps
below.

Step 1. Establish the relation between ut and ut−1.
Since the objective function F is quadratic, namely F (θ) = 1

2 (θ − θ∗)TH(θ − θ∗), for any θt−1 the optimal solution
θ∗ = argminθ F (θ) can always be expressed as

θ∗ = θt−1 −H−1∇F (θt−1). (6)

Then computing the gradient of Pt−1 yields

∇Pt−1(θt) = gt−1 +∇FS(θt)−∇FS(θt−1) + γ(θt − θt−1),

where gt−1 = ∇FSt(θt−1). LetHS denotes the Hessian matrix of the loss on minibatch S. ConsideringHS(θt) ≡HS
holds in the quadratic case, we can obtain ∇FS(θt) − ∇FS(θt−1) = HS(θt − θt−1). Thus plugging this results into
∇Pt−1(θt) further yields

θt =θt−1 − (HS + γI)−1gt−1 + (HS + γI)−1∇Pt−1(θt)

=θt−1 − (HS + γI)−1∇F (θt−1) + (HS + γI)−1∇Pt−1(θt) + (HS + γI)−1rt−1,

where rt−1 = ∇F (θt−1)− gt−1. Next plugging Eqn. (6) into the above equation, it establishes

θt − θ∗ = (I − (HS + γI)−1H)(θt−1 − θ∗) + (HS + γI)−1∇Pt−1(θt) + (HS + γI)−1rt−1.

By multiplyingH1/2 on both sides of the above recurrent form we have

H1/2(θt − θ∗) =(I−H1/2(HS+γI)−1H1/2)H1/2(θt−1−θ∗)
+H1/2(HS+γI)−1∇Pt−1(θt)+H1/2(HS+γI)−1rt−1.

Since ut = H1/2(θt − θ∗), we have

ut =(I−H1/2(HS + γI)−1H1/2)ut +H1/2(HS + γI)−1∇Pt−1(θt)+H1/2(HS + γI)−1rt−1. (7)

Step 2. Upper bound E[‖ut‖].
Conditioned on θt−1 and based on the basic inequality ‖Tx‖ ≤ ‖T ‖‖x‖ we get

E[‖ut‖] ≤E
[
‖I−H1/2(HS+γI)−1H1/2‖‖ut−1‖+‖H1/2(HS+γI)−1H1/2‖‖H−1/2∇Pt−1(θt)‖

]
+ E

[
‖H1/2(HS + γI)−1H1/2‖E[‖H−1/2rt−1‖].

] (8)

From Lemma 1, we know that by setting |St| = 16ν2(µ+2γ)2

µ2 exp
(

µt
µ+2γ

)∧
n, then the inequality always holds

E
[
‖H−1/2rt‖

]
≤ µ

4(µ+ 2γ)
exp

(
− µt

2(µ+ 2γ)

)
.
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Suppose ‖xi‖ ≤ r (i = 1, · · · , n) and `(θ>x,y) is L-smooth w.r.t. θ>x. Then by using Lemma 2 we have

E [‖HS −H‖] ≤ γ =
(
√

log(d) +
√

2)Lr2√
s

,

where s is the size of S. In this way, by using Lemma 3, we can further establish

µ

µ+ 2γ
≤
∥∥∥H1/2(HS + γI)−1H1/2

∥∥∥ ≤ 1 and
∥∥∥I −H1/2(HS + γI)−1H1/2

∥∥∥ ≤ 2γ

µ+ 2γ
. (9)

Similarly, we have ‖H−1/2∇Pt−1(θt)‖ ≤ 1√
µ‖∇Pt−1(θt)‖ ≤ εt√

µ . Now we plug the above results into Eqn. (8) and
establish

E[‖ut‖]
¬
≤ 2γ

µ+ 2γ
‖ut−1‖+

εt√
µ

+ E[‖H−1/2rt−1‖]


≤
(

1− µ

µ+ 2γ

)
‖ut−1‖+

µ

4(µ+ 2γ)
exp

(
− µ(t− 1)

2(µ+ 2γ)

)
+

µ

4(µ+ 2γ)
exp

(
− µ(t− 1)

2(µ+ 2γ)

)
=

(
1− µ

µ+ 2γ

)
‖ut−1‖+

µ

2(µ+ 2γ)
exp

(
− µ(t− 1)

2(µ+ 2γ)

)
,

where in the inequality ¬ we have usedH � µI ,  follows from the condition εt ≤ µ1.5

4(µ+2γ) exp
(
− µ(t−1)

2(µ+2γ)

)
.

By taking expectation with respect to θt−1 we arrive at

E[‖ut‖] ≤
(

1− µ

µ+ 2γ

)
E[‖ut−1‖] +

µ

2(µ+ 2γ)
exp

(
− µ(t− 1)

2(µ+ 2γ)

)
.

By using induction and the basic fact (1− a) ≤ exp(−a),∀a > 0 and for brevity let a = µ
2(µ+2γ) , the previous inequality

then leads to

E[‖θt − θ∗‖H ] = E[‖ut‖] ≤ (1− 2a)E[‖ut−1‖] + a exp (−a(t− 1))

= (1− 2a)
t E[‖u0‖] + a

t−1∑
i=0

(1− 2a)t−1−i exp (−ai)

≤
(

1− 2a

1− a

)t
E[‖u0‖] exp(−at) + a

t−1∑
i=0

(
1− 2a

1− a

)t−1−i
exp (−a(t− 1))

≤
(

1− 2a

1− a

)t
E[‖u0‖] exp(−at) + (1− a) exp (−a(t− 1))

≤ (‖θ0 − θ∗‖H + (1− a) exp(a)) exp (−at)
≤ (‖θ0 − θ∗‖H + exp(2a)) exp (−at)

≤ (‖θ0 − θ∗‖H + e) exp

(
− µt

2(µ+ 2γ)

)
.

This means that for all ut, we have

E[‖ut‖] ≤ (‖θ0 − θ∗‖H + e) exp

(
− µt

2(µ+ 2γ)

)
.

Step 3. Upper bound E[‖ut‖2].
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From Eqn. (7), we can upper bound E[‖ut‖2] as

E[‖ut‖2] =E
[
‖(I−H1/2(HS+γI)−1H1/2)ut−1‖2

+‖H1/2(HS+γI)−1∇Pt−1(θt)‖2+‖H1/2(HS+γI)−1rt−1‖2
]

+ 2E
[
〈(I −H1/2(HS + γI)−1H1/2)ut−1,H

1/2(HS + γI)−1∇Pt−1(θt)〉
]

+ 2E
[
〈(I −H1/2(HS + γI)−1H1/2)ut−1,H

1/2(HS + γI)−1rt−1〉
]

+ 2E
[
〈H1/2(HS + γI)−1∇Pt−1(θt),H

1/2(HS + γI)−1rt−1〉
]
.

Since ESt−1 [rt−1] = 0, it is easy to obtain

E
[
〈(I −H1/2(HS + γI)−1H1/2)ut−1,H

1/2(HS + γI)−1rt−1〉
]

=ESESt−1

[
〈(I −H1/2(HS + γI)−1H1/2)ut−1,H

1/2(HS + γI)−1rt−1〉
]

=ES
[
〈(I −H1/2(HS + γI)−1H1/2)ut−1,H

1/2(HS + γI)−1ESt−1rt−1〉
]

= 0.

Conditioned on θt−1 and based on the basic inequality ‖Tx‖ ≤ ‖T ‖‖x‖, we get

E[‖ut‖2]

≤E
[
‖(I −H1/2(HS+γI)−1H1/2)‖2‖ut−1‖2+‖H1/2(HS+γI)−1H1/2‖2‖H−1/2∇Pt−1(θt)‖2

]
+ E

[
‖H1/2(HS + γI)−1H1/2‖2‖H−1/2rt−1‖2

]
+2E

[
‖(I−H1/2(HS+γI)−1H1/2)‖·‖ut−1‖·‖H1/2(HS+γI)−1H1/2‖·‖H−1/2∇Pt−1(θt)‖

]
+ 2E

[
‖H1/2(HS + γI)−1H1/2‖2 · ‖H−1/2∇Pt−1(θt)‖ · ‖H−1/2rt−1‖

]
.

(10)

From Lemma 1, we know that by setting |St| = 16ν2(µ+2γ)2

µ2 exp
(

µt
µ+2γ

)∧
n, then the inequality always holds

E
[
‖H−1/2rt‖2

]
≤ µ2

16(µ+ 2γ)2
exp

(
− µt

µ+ 2γ

)
.

Suppose ‖xi‖ ≤ r (i = 1, · · · , n) and `(θ>x,y) is L-smooth w.r.t. θ>x. Then by using Lemma 2 we have

E
[
‖HS −H‖2

]
≤ γ2 =

(
√

log(d) +
√

2)2L2r4

s
,

where s is the size of S. In this way, by using Lemma 3, we can further establish

µ2

(µ+ 2γ)2
≤
∥∥∥H1/2(HS + γI)−1H1/2

∥∥∥2≤1 and
∥∥∥I −H1/2(HS + γI)−1H1/2

∥∥∥2≤ 4γ2

(µ+ 2γ)2
.

Similarly, we have ‖H−1/2∇Pt−1(θt)‖ ≤ 1√
µ‖∇Pt−1(θt)‖ ≤ εt√

µ . Now we plug the above results and Eqn. (9)
into Eqn. (10) and establish

E[‖ut‖2] ≤ 4γ2

(µ+ 2γ)2
E[‖ut−1‖2] +

ε2t
µ

+
µ2

16(µ+ 2γ)2
exp

(
− µt

µ+ 2γ

)
+

8γ

µ+ 2γ

εt√
µ
E [‖ut−1‖]

+
εt√
µ

µ

2(µ+ 2γ)
exp

(
− µt

2(µ+ 2γ)

)
.
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Finally, by using E[‖ut‖] ≤ (‖θ0 − θ∗‖H + e) exp
(
− µt
µ+2γ

)
and εt ≤ µ1.5

4(µ+2γ) exp
(
− µ(t−1)

2(µ+2γ)

)
, we can obtain

E[‖ut‖2]

≤ 4γ2

(µ+ 2γ)2
E[‖ut−1‖2]+

µ2

8(µ+ 2γ)2

(
1

2

(
1+exp

(
µ

µ+ 2γ

))
+exp

(
µ

2(µ+ 2γ)

))
exp

(
− µt

µ+ 2γ

)
+

2µγb

(µ+ 2γ)2
exp

(
µ

2(µ+ 2γ)

)
exp

(
− µt

µ+ 2γ

)
¬
≤ 4γ2

(µ+ 2γ)2
E[‖ut−1‖2] + 2a2 exp (−2at) +

4bγa2

µ
exp (−2at)

=
4γ2

(µ+ 2γ)2
E[‖ut−1‖2] + 2a2

(
1 +

2bγ

µ

)
exp (−2at) ,

where a = µ
2(µ+2γ) and b = (‖θ0 − θ∗‖H + e). ¬ uses 1

2

(
1 + exp

(
µ

µ+2γ

))
+exp

(
µ

2(µ+2γ)

)
≤ 4 and exp

(
µ

2(µ+2γ)

)
≤

2. By using induction and the basic fact (1−a) ≤ exp(−a),∀a > 0 and for brevity letting c = 2a2
(

1 + 2bγ
µ

)
, the previous

inequality then leads to

E[‖θt − θ∗‖2H ] = E[‖ut‖2] ≤
(
1− a2

)
E[‖ut−1‖2] + c exp (−2at)

=
(
1− a2

)t E[‖u0‖2] + c

t∑
i=1

(1− 2a)t−i exp (−2ai)

≤E[‖u0‖2] exp(−2at) + c exp (−2at)

≤
(
‖θ0 − θ∗‖2H + 2a2

(
1 +

2bγ

µ

))
exp

(
− µt

µ+ 2γ

)
.

Step 4. Bound E[F (θt)− F (θ∗)].
It is easy to check E[F (θt)− F (θ∗)] = 1

2E[‖θt − θ∗‖2H ] in the quadratic case. So we obtain the desired result:

E[F (θt)− F (θ∗)]=
1

2
E[‖θt − θ∗‖2H ]

≤1

2

(
‖θ0 − θ∗‖2H +

µ2

2(µ+ 2γ)2

(
1 +

2γ

µ
(‖θ0 − θ∗‖H + e)

))
exp

(
− µt

µ+ 2γ

)
¬
≤1

2

(
‖θ0 − θ∗‖2H +

1

4
‖θ0 − θ∗‖H +

3

2

)
exp

(
− µt

µ+ 2γ

)
=

(
1

2

(
‖θ0−θ∗‖H+

1

2

)2

+
5

8

)
exp

(
− µt

µ+ 2γ

)
,

where ¬ uses µ2

2(µ+2γ)2 ≤
1
2 and µγ

(µ+2γ)2 ≤
1
4 . The proof is completed.

B.2. Proof of Corollary 1

Proof. This proof has four steps. In the first step, we estimate the smallest iteration number T such that E[F (θT )−F (θ∗)] ≤
ε. Since the IFO complexity comes from two aspects: (1) the outer sampling steps for constructing the proximal function
Pt(θ)=FS(θ) + 〈∇FSt(θt−1)−∇FS(θt−1),θ〉+ γ

2 ‖θ − θt−1‖
2
2 which requires sampling the gradient ∇FSt(θt−1); (2)

the inner optimization complexity which is produced by SVRG to solve the inner problem Pt(θ) such that ‖Pt(θ)‖ ≤ εt. So
in the second step, we estimate computational complexity of the outer sampling. In the third step, we estimate computational
complexity of the inner optimization via SVRG. Finally, we combine these two kinds of complexity together to obtain total
IFO bounds. Please see the proof steps below.

Step 1. Estimate the smallest iteration number T such that E[F (θT )− F (θ∗)] ≤ ε.
According to Theorem 1, we have

E[F (θt)−F (θ∗)]=
1

2
E[‖θt−θ∗‖2H ]≤ζ exp

(
− µt

µ+2γ

)
,
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where ζ= 1
2

(
‖θ0−θ∗‖H+ 1

2

)2
+ 5

8 with ‖θ‖H=
√
θ>Hθ. In this way, to guarantee E[F (θt)− F (θ∗)] ≤ ε, the iteration

number T should be satisfies

T =
µ+ 2γ

µ
log

(
ζ

ε

)
.

Step 2. Estimate computational complexity of the outer sampling .
The stochastic gradient estimation complexity up to the time step T is given by

T−1∑
t=0

|St| ≤
16ν2(µ+ 2γ)2

µ2

T−1∑
t=0

exp

(
µt

µ+ 2γ

)
=

16ν2(µ+ 2γ)2

µ2

exp
(

µT
µ+2γ

)
− 1

exp
(

µ
µ+2γ

)
− 1

¬
≤16ν2(µ+ 2γ)2

µ2

µ+ 2γ

2µ

ζ

ε
=

16ζν2(µ+ 2γ)3

µ3ε
,

where in ¬ we have used the definition of T such that exp
(

µT
µ+2γ

)
= ζ

ε and the fact exp(a) ≥ 1 + a,∀a > 0. At the same
time, we also have

T−1∑
t=0

|St| ≤ nT =
(µ+ 2γ)n

µ
log

(
ζ

ε

)
.

By combing the above two inequalities we obtain the computational complexity of the outer sampling as

16ζν2(µ+ 2γ)3

µ3ε

∧ (µ+ 2γ)n

µ
log

(
ζ

ε

)
= O

((
1 +

κ3 log1.5(d)

s1.5

)
ν2

ε

∧(
1 +

κ log0.5(d)

s0.5

)
n log

(
1

ε

))
,

where we use γ =
(
√

log(d)+
√
2)Lr2√

s
and κ = L

µ .

Step 3. Estimate computational complexity of the inner optimization via SVRG.
At each iteration time stamp t, we need to optimize the inner problem Pt(θ)=FS(θ) + 〈∇FSt(θt−1)−∇FS(θt−1),θ〉+
γ
2 ‖θ − θt−1‖

2
2. In Pt(θ), its finites-sum structure comes from FS(θ) and its gradient.

For (µ+ γ)-strongly-convex and (L+ γ)-smooth problem, it is standardly known that the IFO complexity of the inner-loop
SVRG computation to achieve E[Pt−1(θT )− Pt−1(θ∗)] ≤ εt can be bounded in expectation by O

((
s+ L+γ

γ+µ

)
log
(

1
εt

))
,

where θ∗ denotes the optimal solution of Pt−1(θ). Since Pt−1(θ) is (µ+ γ)-strongly-convex, we have ‖∇Pt−1(θt)‖2 ≤
2(µ+ γ)(Pt−1(θT )− Pt−1(θ∗)). In this way, to achieve ‖∇Pt−1(θt)‖2 ≤ εt = µ1.5

4(µ+2γ) exp
(
− µ(t−1)

2(µ+2γ)

)
, the expected

IFO complexity of SVRG is

O
((

s+
L+ γ

γ + µ

)
log

(
2(µ+ γ)

εt

))
≤O

((
s+

L

γ

)
log

(
(µ+ γ)2

µ1.5
exp

(
µ(t− 1)

µ+ 2γ

)))
=O

((
s+

L

γ

)(
log

(
(µ+ γ)2

µ1.5

)
+
µ(t− 1)

µ+ γ

))
.

From above result we know that E[F (w(t))] ≤ F (w∗) + ε after T = O
(
γ
µ log

(
1
ε

))
rounds of iteration. Therefore the total

inner-loop IFO complexity is bounded in expectation by

O

(
T∑
t=1

{(
s+

L

γ

)(
log

(
(µ+ γ)2

µ1.5

)
+
µ(t− 1)

µ+ γ

)})
=O

((
s+

L

γ

)(
T log

(
(µ+ γ)2

µ1.5

)
+
µT 2

γ

))
=O

((
s+

L

γ

)(
γ

µ
log

(
(µ+ γ)2

µ1.5

)
log

(
1

ε

)
+
γ

µ
log2

(
1

ε

)))
.

We plug γ =
(
√

log(d)+
√
2)Lr2√

s
into the above inner-loop IFO bound to obtain

O

((
s+

√
s

log(d)

)
L

µ

√
log(d)

s

(
log

(
L1.5

µ1.5

√
log(d)

s

)
log

(
1

ε

)
+ log2

(
1

ε

)))
.
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Step 4. Combing inner optimization complexity and outer sampling complexity to obtain total IFO bounds.
Combing the preceding inner-loop optimization complexity and outer sampling complexity yields the following overall
computation complexity bound
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where κ = L
µ .

This competes the proof.

B.3. Proof of Corollary 2

Proof. The result in Corollary 2 can be easily obtained. Specifically, we plug ε = O( 1√
n
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√
n) and s =

O
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)
into Corollary 1 and can compute the desired results.

C. Proofs for the Results in Section 3.2
C.1. Proof of Theorem 2

Proof. This proof has two steps. In the first step, we prove the results in the first part of Theorem 2, namely the linearly
convergence of F (θ) on the generic loss functions. Then in the second step, we analyze the computational complexity of
HSDMPG on the generic loss functions. Please see the following detailed steps.

Step 1. Establish linearly convergence of F (θ).
To begin with, by using the smoothness property of each individual loss function `(θ>x,y) we can obtain
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where ¬ we use L ≥ σ. By setting z = σ
L and combining all results together, we have
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Then by using the basic fact (1− a) ≤ exp(−a),∀a > 0 and ε′t = σ
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)
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Step 2. Establish computational complexity of HSDMPG for achieving E[F (θ)− F (θ∗)] ≤ ε.
It follows immediately that E[F (θ)− F (θ∗)] ≤ ε is valid when
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At each iteration time stamp t, the leading terms in Theorem 1 suggest that the IFO complexity of the inner-loop HS-
DMPG computation to achieve ε′t-sub-optimality ofQt can be bounded in expectation by
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From above result, we know that E[F (θ)− F (θ∗)] ≤ ε after T = O
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inner-loop IFO complexity (w.r.t. the quadratic sub-problem) is bounded in expectation by
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This proves the desired bound.

C.2. Proof of Corollary 3

Proof. Based on Theorem 2, the results can be easily obtained. Specifically, we plug ε = O( 1√
n

) , κ = O(
√
n) and

s = O
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)
into Theorem 2 and can compute the desired results.
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D. Proof of Auxiliary Lemmas
D.1. Proof of Lemma 1

The following lemma from (Lei & Jordan, 2017) will be used to bound the gradient estimation variance.

Lemma 4. (Lei & Jordan, 2017) Let z1, ..., zN ∈ Rp be an arbitrary population of N vectors with
∑N
i=1 zi = 0. Let S be

a uniform random subset of [N ] with size n. Then
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The proof is completed.

D.2. Proof of Lemma 2

Lemma 5. (Oliveira, 2010) Suppose {Ai}ni=1 are deterministic Hermitian matrices and {εi}ni=1 are independent Bernoulli
variables taking values ±1 with probability 1
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way, we can establish
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Therefore, we can further obtain
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The proof is completed.

D.3. Proof of Lemma 3

Proof. Since bothA+ γI andB are symmetric and positive definite, it is known that the eigenvalues of (A+ γI)−1B are
positive real numbers and identical to those of (A + γI)−1/2B(A + γI)−1/2. Let us consider the following eigenvalue
decomposition of (A+ γI)−1/2B(A+ γI)−1/2:

(A+ γI)−1/2B(A+ γI)−1/2 = Q>ΛQ,

whereQ>Q = I and Λ is a diagonal matrix with eigenvalues as diagonal entries. It is then implied that

(A+ γI)−1B = (A+ γI)−1/2Q>ΛQ(A+ γI)1/2,
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which is a diagonal eigenvalue decomposition of (A+ γI)−1B. Thus (A+ γI)−1B is diagonalizable.

To prove the eigenvalue bounds of (A+ γI)−1B, it suffices to prove the same bounds for (A+ γI)−1/2B(A+ γI)−1/2.
Since ‖A − B‖ ≤ γ, we have B � A + γI which implies (A + γI)−1/2B(A + γI)−1/2 � I and hence
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1/2(A+ γI)−1B1/2 � I , implying ‖I −B1/2(A+ γI)−1B1/2‖ ≤ 2γ
µ+2γ . The

proof is competed.

D.4. Descriptions of Testing Datasets

We first briefly introduce the ten testing datasets in the manuscript including including ijcnn, a09, w8a, covtype, protein,
codrna, satimage, sensorless, letter, rcv1. All these datasets are provided in the LibSVM website1. Their detailed
information is summarized in Table 2. From it we can observe that these datasets are different from each other due to their
feature dimension, training samples, and class numbers, etc.

Table 2: Descriptions of the ten testing datasets.

#class #sample #feature #class #sample #feature

ijcnn1 2 49,990 22 codrna 2 59,535 8
a09 2 32,561 123 satimage 6 4,435 36
w8a 2 49,749 300 sensorless 11 58,509 48
covtype 2 581,012 54 rcv1 2 20,242 47,236
protein 3 14,895 357 letter 26 10,500 16

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/


