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This supplementary document contains the technical proofs of convergence results
and some additional experimental results of the NeurIPS’20 submission entitled
“Theory-Inspired Path-Regularized Differential Network Architecture Search”. It
is structured as follows. In Appendix A, we provides more experimental results
and details, including the robustness investigation of PR-DARTS to regularization
parameters, effects of group-structured sparse regularization to gate activate proba-
bility, and training algorithms and details of PR-DARTS. Appendix B summarizes
the notations throughout this document and also provides the existing auxiliary
theories and lemmas for subsequent analysis. Then Appendix C gives the proofs of
the main results in Sec. 3, namely Theorem 1, by first introducing auxiliary theories
and lemmas for subsequent analysis whose proofs are deferred to Appendix E.
Next, in Appendix D we presents the results in Sec. 4, including Thoerems 2, 3
and 4. Finally, Appendix E provides the proofs for auxiliary theories and lemmas
in Appendix C.

A More Experimental Results and Details

Due to space limitation, we defer more experimental results and details to this appendix. Here we
first investigate robustness of PR-DARTS to regularization parameters. Then we present effects of
group-structured sparse regularization to gate activate probability, and also show the reduction cell
of PR-DARTS on CIFAR10. Next, we introduce the training algorithm of PR-DARTS, and finally
present more setting details of optimizers for searching architectures and retraining from scratch.

A.1 Robustness to Regularization Parameters

Fig. 3 reports the effects of regularization parameters A1 ~ A3 to the performance of PR-DARTS. Due
to the high training cost, we fix two regularization parameters and then investigate the third one. From
Fig. 3, one can observe that for each A (A1 or A2 or \3), when tuning it in a relatively large range,
eg M € [1072,1], A2 € [107*%,1072%) and X3 € [107*,107 1], PR-DARTS has relatively stable
performance on CIFAR10. This testifies the robustness of PR-DARTS to regularization parameters.
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Figure 3: Effects of regularization parameters A; ~ A3 to the performance of PR-DARTS.

Preprint. Under review.



~®- Normal Cell ~@- Reduction Cell

°
o

Gate Activate Probability
Gate Activate Probability

i i *

H 06 06

| Ch—1 2 i

H sep_copv_5*5 m H

i dis_cony 5*s ) |

:‘ % * H 0. 03

\ - = 3 Vi 100 200 100 200

Iteration Number Iteration Number

(a) reduction cell on CIRAR10 (b) gate activate probability of normal and reduction cells

Figure 4: Visualization of search results. (a) denotes the selected reduction cell on CIRAR10. The
normal cell is displayed in Fig. 1 in the manuscript. (b) shows the gate activate probability of normal
cell and reduction cell in PR-DARTS.

A.2 Effects of Group-Structured Sparse Regularization to Gate Activate Probability

Here we first display the selected reduction cell on CIRAR10 in Fig. 4 (a). The normal cell selected
on CIFAR10 is displayed in Fig. 1 in the manuscript.

Next, we also report the average gate activate probability in the normal and reduction cells in
Fig. 4 (b). At the beginning of the search, we initialize the activation probability of each gate to
be one. This is because (1) as shown in Theorem 3, the activation probability of the gate gill is
P(gl), #0) = O0(BY) — 7In 52); (2) we seta = —0.1,b = 1.1, 8") = 0.5 and initialize 7 = 10 which
leads to P(g{) # 0) = ©(B", — 7In 52) ~ 1. In this way, all gates will be well explored. With along
more iterations, the group structured sparsity regularization encourages competition and cooperation
among all operations to improve the performance, and also prunes redundancy and unnecessary
connections in the cells as well. To measure the overall sparsity of the normal cell, we compute its
overall average activation probability @H Zg“i g ]P’(géfl # 0), where the gate set G collects all the

operation gate in the normal cell. Similarly, we can compute the average activation probability of
gates in the reduction cell. As shown in Fig. 4 (b), for both normal and reduction cells, their average
gate activate probability becomes smaller with along more iterations. This indicates the activation
probability of the gates on redundancy and unnecessary connections becomes smaller, which means
that sparsity regularizer gradually and automatically prunes redundancy and unnecessary connections
which reduces the information loss of pruning at the end of search. Moreover, this sparsity regularizer
defined on the whole cell can encourage global competition and cooperation of all operations in the
cell, which differs from DARTS that only introduces local competition among the operations between
two nodes. Actually, sparse cell also can reduce the computation cost and boost the search efficiency.

A.3 Algorithm Framework of PR-DARTS

In this subsection, we introduce the training algorithm of PR-DARTS in details. Same as DARTS,
we alternatively update the network parameter W and the architecture parameter 3 via gradi-
ent descent which is detailed in Algorithm 1. For notation in Algorithm 1, Fp_, (W,8) =
Wlaml Yoy By | (W,B;(X,y)) denotes the training loss on mini-batch By.in. Similarly, the
loss Fs,,, (W, 3) denotes the validation loss on mini-batch B,y. When we compute the gradient

Vs Fs,.,,, (W, 3), we ignore the second-order Hessian to accelerate the computation which is the
same as first-order DARTS.

Algorithm 1 Searching Algorithm for PR-DARTS

Input: training dataset Dy.in and validation dataset Dy,, mini-batch size b, learning rate 7.
while not convergence do
sample mini-batch Birin from Dyin to update W by gradient descent W =W —nVwFps, . (W, 8).
sample mini-batch By, from Dy, to update 3 by gradient descent 3=8 — nVg Fs (W, 3).
end while
Output: 3

A4 Algorithm Parameter Settings

CIFAR10 and CIAFR100. In the search phase, following DARTS, we use momentum SGD to
optimize network parameter W, with an initial learning rate 0.025 (annealed down to zero via cosine



decay [1]), a momentum of 0.9, and a weight decay of 3 x 10™*. Architecture parameter 3 is updated
by ADAM [2] with a learning rate of 3 x 10~* and a weight decay of 107%. For evaluation on
CIFAR10 and CIFAR100, we use momentum SGD with an initial learning 0.025 (cosine decayed to
zero), a momentum of 0.9, a weight decay of 3 x 10™*, and gradient norm clipping parameter 5.0.

ImageNet. We evaluate the transfer ability of the cells selected on CIFARI10 by testing them on
ImageNet. Following DARTS, we use momentum SGD with an initial learning 0.025 (cosine decayed
to zero), a momentum of 0.9, a weight decay of 3x10™%, and gradient norm clipping parameter 5.0.

B Notation and Preliminarily

B.1 Notations

In this document, we use Xfl)(k) to denote the output Xfl) of the i-th sample in the I-th layer
at the k-th iteration. For brevity, we usually ignore the notation (k) and i and use X to de-
note the output X of any sample X (Vi = 1,---,n) in the [-th layer at any iteration. We use
Q= {wOoOwh w®w? ... wl ... wh .. owit o w W, W) to
denote the set of all h('”'d) learnable matrix parameters, including the convolution parameters w
and the linear mapping parameters W. Let 2, denote the i-th matrix parameters in €2, e.g. Q; = W),
For notation simplicity, here we assume the input size is m X p to avoid using m x p. The operation
vec (X)) vectorizes the matrix X.

Then we define the loss
1 1 1
F(Q)—%Hy—u ||2—?z_: i — i) —n;fn

where u (k) = [ui(k);uz2(k); - ,un(k)] € R™ denotes the prediction at the k-th iteration, y =
[y1;92;- - ,ya] € R™ is the labels for the n samples {X;}7,, and ¢; = (y; — u;)? denotes the
individual loss of the i-th sample X;.

Then for brevity, ¢(€2) and ¢;(€2) respectively denote the losses when feeding the input (X, y) and
(Xi,y:). Then we denote the gradient of ¢(€2) with respect to all learnable parameters 2 as

veo (G ) {e ()} {vee (w:) §
oW (© owV oglghﬂ,ogsglq7 oW 0<s<h—1 ’

where the vec (X') operation vectorizes the matrix X into vector. Here we also let Vi, £(2) denotes
the gradient of ¢(€2) with the i-th matrix parameter, e.g. Vgq,4(Q2) = vec (aW(O))'

VaF(Q) = 137" | Vadli(2) where £;(2) is the loss given input (X;,y:). In this way, we can
define the Gram matrix G (k) € R™*"™ at the k-th iteration in which its (4, j)-th entry is defined as

Val() =

Therefore,

Gij(k) = (Vali((k)), Val;(©(k))),

where Vq/;(Q2(k)) denote the gradient of the loss ¢; on the i-th sample (X, y;) with respect to all
parameter €2 at the k-th iteration. We often ignore the notation k and use G to denote the Gram matrix
that does not depend on iteration number k.

According to the definitions, we have

Gij(k) = (Vali((k)), Val;(Q(F))) = (Va,li(2(K)), Va, l;(©2(k)))

h—11— -
_ oL, ’ L n Z ol 7 ¢ +Z 9 ’ ¢; >
OW O) (k) W (O (k) ==\ owD (k) oW (k) = \OW. (k)" OW.(k)

For brevity, we let

o ] Ol e s [ O oL s/ 0t 0L




Therefore, we have

Gi;(k) = Gy (k) + i i G(k) + i G;;(k), G(k)=Gk)+ i i G" (k) + i G* (k).
=1 s=0 s=0 =1 s=0 s=0

Finally, since we need to compute the gradient. Here we define an operation for computing the
gradient for convolution operation. For back-propagate, we define the inverse operation of ®(X) as
¥(L®(X)) = X € R™*?. For the (i, j)-th entry in ¥(X), it equals to the sum of all X, ; in ®(X).

B.2 Auxiliary Lemmas

Lemma 1. [3][Chebyshev’s inequality] For any variable z, we have

Var(z
P (| — Efa]l > a) < Y1,
where a is a positive constant, Var(x) denotes the variance of x.
Lemma 2. [4] Given a set of matrices { A;, B;} with proper sizes, if ||Aill2 < a; and ||Bi||2 < a;
and ||A; — B;i||r < bia;, we have

i=1 i=1 F i=1 i=1

Lemma 3. [5][Cauchy Interlace Theorem] Let A be a Hermitian matrix of order n and let B be
a principal submatrix of A of order n — 1. If A, < A\p—1 < -+ < \q lists the eigenvalues of A and
fn < pin—1 < - < po the eigenvalues of B, then My, < pin < A1 < fin—1 -+ < Aa < po < A1

Lemma 4. [6][Chi-Square Variable Bound] Let © be chi-square variable with n degree of freedom.
Then for any t > 0, it holds

P (a: —n>2vVnt + Qt) <exp(-t), and P (a: —n< —2\/1E) < exp(—t).

Lemma 5. [4] Suppose o is analytic and not a polynomial function. Consider data { X }i—,
are not parallel, namely vec (X;) ¢ span(vec (X;)) for all i # j, Then the smallest eigenvalue the
matrix G which is defined as

G(X)i; = Bweno,n) o((W, Xi))o (W, X;))
is larger than zero, namely Amin(G) > 0.

Lemma 6. [4] Suppose o is analytic and not a polynomial function. Consider data {X[_}i—,
are not parallel, namely vec(X;) ¢ span(vec(X;)) for all i # j, Then the smallest eigenvalue the
matrix G which is defined as

G(X)ij = Ewnno,n) o (W, X))o (W, X))
is larger than zero, namely Amin(G) > 0.
Lemma 7. [4] Suppose the activation function o(-) satisfies Assumption 1. Suppose there exists

¢ > 0 such that ) )
. aj paiby | a3 p2a2b2
A= [p1a1b1 B2 } =0, B = |:pa2b2 B2 } =0,

where the parameter satisfies 1/c < x < c in which z could be a,, az, b1, ba. Let g(A) =
E(u,0)~n(0,4)0 ()0 (v). Then we have

9(A) —g(B)| < c[[A - B||r < 2C||A - Blc,

where C is a constant that only depends on c and the Lipschitz and smooth parameter of o(-).

C Proofs of Results in Sec. 3

C.1 Proof of Theorem 1

Suppose Assumptions 1, 2 and 3 hold. To prove our main results, namely the results in Theorem 1,
we have two steps. In the first step, from Lemma 21, we have that if m and 7 satisfy
/2 22 2 /
m > CmC pkiciop Con< cyA ’
A%n Vmuth3k2ct




h l
where ¢;, and ¢, are two constants, ¢ = (1+ as + 2azpuvkecwo) , . = maXS,lOLg’)z and oz =

maxs oz(gl)3 Then with probability at least 1 — §/2 we have

Iy = < (1= 22 CON) - v,

where k denotes the iteration number, Amin (G(0)) denotes the smallest eigenvalue of the Gram matrix
G(0) at the initialization. For this part, we prove it in Appendix C.3.
In the second step, we will prove that the smallest eigenvalue of can be lower bounded. Specifically,

we prove this results in Lemma 24: if m > M, it holds that with probability at least
1 — §/2, the smallest eigenvalue the matrix G satisfies

h—1 s—1
3Cg s
)\mm ) > — Z( <H 5,2))2> )\min(K)~

t=0

_ h—1, (h)\2 a))?) i .
where A = 3¢, 3 " (ayg'3) o (@®)?) Amin(K), ¢ is a constant that only depends on ¢ and
the input data, Amin (K) = min, ; Amm(KU) is larger than zero in which Amin (K ) is the the smallest
XX, X'X;

eigenvalue of K;; = {X TX, XX,

] Appendix C.4 provides the proof for this result.

Finally, we combine these results in the above two steps and can obtain that if m >
L,,Lu [pp*n®log(n/8)+c*kicio/n] and n< WEW&, where cy0, ¢m, ¢, are constants, with proba-
b111ty at least (1 — 6§/2)% > 1 — 6, we have

ly —u(k)[3 < (1 =nA/4) |ly —ulk - D5 (Vk>1),

where A = 222\ i (K) S22 (V)2 T30 (@))?, the positive constant ¢, only depends on o and

input data. On the other hand, we have
1

then we can obtain the desired results in Theorem 1. Please refer to the proof details in Appendix C.3
and C.4 for the above two steps respectively.

Note that our proof framework is similar to [4]. But there are essential differences. The main
difference is that here our network architecture is much complex (e.g. each layer connects all
the previous layers) and each edge in our network also involves more operations, including zero
operation, skip operation and convolution operation, which requires bounding many terms in this
work differently and more elaborately.

For the following proofs, Appendix C.2 provides the auxiliary lemmas for the proofs for Step 1 and
Step 2. Then Appendix C.3 and C.4 respectively present the proof details in Step 1 and Step 2.

C.2 Auxiliary Lemmas

Lemma 8. The gradient of the loss ¢ = %(u — y)* with parameter and temporary output can be
written as follows:

o = BV ot
s s s s l
WZ(U—y)WH’ Z (al(,z)m"‘ 13) ‘1’<(W )) (U, ("Vz( )q)(X<)))®8X(S)))>’

s=I+1

ﬁ — (0T ! (0) i mxp
e —7'\11((W ) (o (W @(X))@aX(O) € R™*P,

(0<I<h—-1,0<s<1-1),

.
mi’fm o7 d (X)) (a’ (Whex)) o %) ERMP(O<I<h—1,0<s<1—1),
o¢ _ / (0) ol T mxp
S =TX) (a (W <I>(X)) ©5x@,) SRV
a% —(u—y) X e R™,

514 X
where ® denotes the dot product, ax@ € R™*P,



See its proof in Appendix E.1.

Lemma 9. The gradient of the network output u with respect to the output and convolution parameter
can be written as follows:

h—1
Ou (s) Ou () NT (1 (s W Ou
axm Wit 2 <a”2 sxr ey (W) (o (Wex ™) 0 5555 ) ) )

s=Il+1

(0<I<h-1,0<s<l-1),

Ou _ ONT (- (v © _Ou_ mxp
X —T\I/((W ) (a (W @(X))@aX(O) € R™*P,

.
a‘ifm alro(x) ( (Wihex)) o %) ER™T(0<I<h-1,0<s<1-1),
0 ex) (o (W<°><1>(X)) o 01\ cgmer
oW © 0X© ’

a‘?;‘f =X® eR™P (0<s<h-1),
where © denotes the dot product and axU) € R™XP,

See its proof in Appendix E.2.

Lemma 10. Suppose Assumptions 1, 2 and 3 hold. Given a constant 6 € (0, 1), assume m > %,

where ¢1 = o*(0) + 4|0*(0)|u/2/7 + 8|0 (0)|u*\/2/7 + 32u* and ¢ = E . n0 +) [0%(w)]. Suppose
VP

Ws(l)(()) < Vmewo V0 <1 < h,0 < s <1 —1. Then with probability at least 1 — 6 /4, we have

1
— <[ XP0)]F < coo-

0

where c.o > 1 is a constant.

See its proof in Appendix E.3.

Lemma 11. Suppose Assumptions 1, 2 and 3 hold. Assume |W!(0)||l2 < vmcwo, |WE(k) —
WL0)||r < /mr. Then for Vi, we have

1XDk) — XD 0)||r < (1 + s+ agpvke (r + cwo))l pvker,
[WOwex ) - wh0ex V)| < o (1+as+ ayuvE (¢ + cuo)) Ve,

)

5,2

O)

where a; = max; | oy and az = max,; o3, and cqo > 1 is given in Lemma 10.

See its proof in Appendix E.4

Lemma 12. Suppose Assumptions 1, 2 and 3 hold. Assume ﬁ lu(t) — yllp = cy and [|[Wr(t)||r < cu,
W2 (t) = W (0)||r < v/mir, and W, (0)||r < v/mcwo. Then for VI, we have
1 z”: ot
n 4
=1

l
— S(1+a + o u\/k:(r—kcwo)) CyCu,
aXZ(l)(t) . 2 3 Y

l
where o, = maxs ag 5 and oz = max, a( )

See its proof in Appendix E.5.

Lemma 13. Suppose Assumptions 1, 2 and 3 hold. Assume ||y — u(t)||3 < (1 — Z)'|ly — w(0)||3

holds fort = 1,--- | k. Then by setting

_ l
= W max (17 2 (1 + ay + 2a3M\/kccwo) ail’éuvkccwo) < Cwo,



we have that for any s = 1,--- |k + 1,
W) - W) |r < vmr, W ()= W(0)llr < VmF, [[Wi(t) = We(0)||r < VmF,

OF(Q 4c Cz0Cw kc
WO+ 1) = W) = o | < SV ) — ),
F
OF(Q 407701_(9” HCz0CwoV ke
W) WO = | AR () -y,
i F
OF () 2n¢cz0
_ _ < _
W 1) = W0l = | o ] < 2 )~

(

{1
s s

P
where ¢ = (14 a + 20/ kecwo) With ay = max,; o Z)Q and az = max,,; & )3

See its proof in Appendix E.6.
Lemma 14. Suppose Assumptions 1, 2 and 3 hold. Then we have

HX“)(k +1) - X‘”(k)HF

l 2(a3)?czo0 dernp® ceocuwoke
g(l—i—a + 2V kecwoox ) (1+ u(k) — ,
2 0zl (c, +2 Tﬂccwoagu)\/ﬁ Jn lu(k) =yl »

(

s

1 l
where ai; = max,,; )2 and a3 = max, agé.

See its proof in Appendix E.7.
Lemma 15. Suppose Assumptions 1, 2 and 3 hold. Then we have

HW“”(k)HF < 2y/mcuo, HW;”(k)HF < 2vVmewo,  [We(k)|lp < 2vmewo.

If 7in Lemma 13 satisfies 7 < (ras C% e which can be achieved by using large m, then
ayt2azpuvkecwo) pvke

we have
o], 20

F
(

1 l
where ai; = max, ozsﬂ)2 and a3 = max, ag?,

See its proof in Appendix E.S.
Lemma 16. Suppose Assumptions 1, 2 and 3 hold. Then we have

1% (k) = X O0)|r < pvEF,  I1XS (k) = XP(0)|2 < e(1+ 2ese00) vk,
where c = (1+ ay + 2a3u\/Ecwo)l with ay = max, a% and a3 = max, ai%. Here 7 is given in
Lemma 13.

See its proof in Appendix E.O.
Lemma 17. Suppose Assumptions 1, 2 and 3 hold.

lui(k) — ui(0)| < 2v/mh (Ca:O + cwoc(l + 2013%0)#\/5) T,

where c = (1+ ay + 2a3u\/kccwg)l with ay = max; aig and a3 = max, ai{é. Here 7 is given in
Lemma 3. Besides, we have
ol oL

o) — o) < Clca3cioczopkcm?7
0X;" (k) 0X;7(0)

F
where c; is a constant.

See its proof in Appendix E.10.
Lemma 18. Suppose Assumption 2 holds. Then with probability at least 1 — §/4, it holds

[WOlr < /mcuwo,
W) |r < miewo (VO <I<h—1,0<s<1—1),
W, (0)||lr < v/mewo (VO < s < h—1).

See its proof in Appendix E.11.



C.3 Step 1 Linear Convergence of ||y — u (k)|

Here we first present our results and then provides their proofs.
Lemma 19. Suppose Assumptions 1, 2 and 3 hold. If m and n satisfy

2 2 2
{m > rkicholv=uOI (1 4 o, 1 20 py/Fecuo) ™",

n < coA
= 4h
\/mu‘lcﬁjocioh?’k?(l+a2+2\/kccwoa3u) ’

where c¢1 and cy are two constants and ) is smallest eigenvalue of the Gram matrix G(t) (t =
1,---,k — 1), then with probability at least 1 — 6 /2 we have

k
Iy —uthli < (1= 5 )y - wli -l < (1-5) v - w O

See its proof in Appendix C.3.1.
Lemma 20. Suppose Assumptions 1, 2 and 3 hold. If m satisfy
c30 i kecoc?
Z = 3,
where c3 is a constant, ¢ = (14 as + 2a3u\/Ecu,o)h, Q= max, aig and a3 = max, aﬁ%, then

we have

I

)\min G 0
I6H) -G, < P (GO
where Amin (G(0)) is the smallest eigenvalue of G(0).

See its proof in Appendix C.3.2.
Lemma 21. Suppose Assumptions 1, 2 and 3 hold. If m and n satisfy

’ 2 2.2 2
m > Cm¢ pkcchV’
- A2n )
P\

7
n S /mu4h3kgc4 )

where cn, and c, are two constants, ¢ = (14 ay + 2a3,u\/kccwo)h, Q, = max,, ag’)z and ag =
maxs, agl’é. Then with probability at least 1 — § we have

Iy = uth)lf < (1= Pt EON) py it < (1 P EOD Yy o

See its proof in Appendix C.3.3.

C.3.1 Proof of Lemma 19

Proof. Here we use mathematical induction to prove the result. For k& = 0, the results in Theorem 19
holds. Then we assume for j = 1,--- , k, it holds

y—ulE < (1= %) Iy - u =Dl < (1= 5) Iy - w@IF G=1 5.

Then we need to prove ;7 = k + 1 still holds. Our proof has four steps. In the first step, we establish
the relation between |y — u(5)||3 < ||y — w(4)||3 + H1 + H2. Then in the second, third and fourth
steps, we bound the terms Hi, H», H3 respectively. Finally, we combine results to obtain the desired
result.

Step 1. Establishing relation between ||y — u(j)|3 < |ly — w(j)||3 + H1 + Hz + Hs.
According to the definition, we can obtain
ly — w(k + D)3 =lly — u(k) +ulk) —ulk+1)]3
=lly —u(k)[I2 +2(y — u(k),u(k) — u(k + 1)) + [u(k) = u(k + 1)]3.



Then for brevity, ¢(€2) and ¢;(€2) respectively denote the losses when feeding the input (X, y) and
(Xi,v:). Then as introduced in Sec. B, we denote the gradient of ¢(€2) with respect to all learnable
parameters €2 as

ol ol ol
Val(Q) = [vec( ) { vec <i)} ;{vec( )} }
oW © 3Ws(l) 0<I<h—1,0<s<I—1 O 0<s<h-1

Based on the above definitions, when we use gradient descent algorithm to update the variables with
learning rate n, we have

wi(k + 1) — ui (k) =u; (k) — nVaF(Q(k))) — ui(Q2(k))

= /tzo (VaF(Q(k)), Vau; (k) — sVaF(QK)))) dt = Al(k) + AL(k),

where
Al == [ (VaP(@(®). Vau (@) d
AL(k) = /tzo (VaF(Q(k)), Vau; (QK)) — Vau: (k) — tVaF(Q(K)))) dt.
Then we define two important notations:
Av(k) = [ALR): A3k AT (O] € RY, Ag(k) = [AB(R); A (R):--- s AF (k)] € B
In this way, we have u(k + 1) — u(k) = A, (k) + Ao (k). Now we consider

Al == [ (VaP(@(®), Vau. (@)

=—n(VaF(Q(k)), Vau; (22(k)))

__n Z —u;) (Vau; ((k))), Vau; ((k)))

n (h+1)(5+1)
- % > (wi—uwi) > (Ve (2AK), Va,u: (QR))

Let GL, (k) = (Va,u; ((K))), Ve, u; (2(k))). In this way, we have G(k) = > P+ Gt Then

A (k) can be formulated as follows:
A (k) = —nG(k)(u(k) - y).
In this way, we can compute
2(y — u(k), w(k) — w(k + 1)) = = 2(y — u(k), Ay (k) + Az (k)
== 2n(u(k) — y) " G(k)(u(k) — y) — 2(y — u(k), As(k))

Therefore, we can decompose ||y — u(k + 1)||3 into

ly —u(k+1)[13
=lly — w(k)I[3 + 20y — u(k), u(k) — ulk + 1)) + [[u(k) —u(k +1)|3
=lly —w(k)II3 — 2n(u(k) = y) " Gk)(ulk) —y) = 2(y — u(k), Az (k) + [ulk) —ulk +1)|3
<lly — u(k)|3 — 2n(u(k) — )" G(k)(u(k) — y) + 2lly — w(k)||2 Ao (k)2 + [lu(k) — u(k + 1)3.

9

Let Hy = —2n(u(k)~y) " G(k)(u(k) ~y), Ho = 2|y —u(k)||2l| Az (k)]|2 and Hs = [[u(k) —u(k+1)]3.
The remaining task is to upper bound H; ~ Hs.

Step 2. Bound of H;.



To bound H,, we can easily to bound it as follows:
Hy = —2n(u(k) —y) " G(k)(u(k) —y) < —2nA||[u(k) - yl3,
where A = ming Amin (G (k)).
Step 3. Bound of H-.
In this step, we aim to bound H> = 2|y — u(k)||2||A2(k)||2 by bounding ||A%(k)||2. According to the
definition, we have
. n
A5 (k) :/ (VaF(Q(k)), Vau; (2(k)) — Vau; (Qk) — sVaF(Qk)))) dt
t=0
<n wax [[Va F(QE) [Vau (k) = Vau, (k) = tVaF(QK))] -
In this way, we need to bound max;cjo,; |[|[Vau: (2(k)) — Vaui (Q(k) — tVaF(2(k)))|| and
IVaF (k)| -
Step 3.1 Bound of ||V F(Q(k))||» in Ha. According to the definition, we have
(h+1)(h/2+1)
IVaF@QE)Ir< > Ve, FQk)],
t=1
|l oF
B 8W<0

h—11-1

o] P W<)k Z

h—11-1 20
h+ 2cpcwovke | 1+ al) = Jlu(t) — yll,
( < =0 s= f ’

where @ holds by using Lemma 13 with ¢ = (14 a, + 2a3u\/ECwO)Z, a, = max,, agg and

Q3 = maxs, ag ), since Lemma 13 proves

INe

4C,LLCzchO\/ OF(Q) 4ca( éuczocwoxﬁ
aW(Q) “lu)—yll, 0 lu(t) =yl .
vn ow )|, NG
201
‘ aW t \fOIIU() Yll2,

Step 3.2 Bound of | Vau; (2(k)) — Vaui (2(k) — tVaF(Q(k)))| » in Ha.
For brevity, let Q(k,t) = Q(k) — tVa F(Q2(k)). In this way, we can bound

(h+1)(h/2+41)
IVau: (Qk) = Vaus (K D)< > [[Va,us (k) — Va,ui (K, 5))| -
o=1
. ou; ou; hz:li ou; ou; hz: ou; ou;
oW O (k) W O (k1) i ow D (k) oW (k1) — (k) oW (k1) ||

In the following, we will bound each term. We first look at H

ou,; :
LR ~ oW,k || By using Lemma 8,

we have 8V‘3,“1<k) =X, l)( k). Therefore, we can obtain
s | HX“) - X0k = 2
(k) OW(k,t) ‘ Foox (k)
' g (10)
1 ¢ Al !
<t— R T — 1 B cCw U
*tn; 6Xi(l)(k) i 77}( +a2+2a3u\/k>c 0) cycC

where @ holds since in Lemma 13, we have show
max (W) = WO )|, [W (1) = W ©O)ll, [We () = We(0) 1) < Vi < Vimewo, (11)

which allows us to use Lemma 12 which shows

1« ol; ~ ! !
gE:l m §(1+a2+a3,u\/a('r+cwo)) cycu§(1+a2+2a3,u\/acwo) CyCu, (12)
i= i F

10



where parameters f lu(t) — yll, = ¢y and |Wi(t)|| 5 < cu, ap = maxs ai 5 and a3 = max,; @

Moreover, from Lemma 13, we have |[W,(t)||» < [[Wr(t) — Wr(0)|| + [Wr(0)|| » < 2v/mcwo. In
this way, we have

o8

h
Ou; ou;
- <nh (14 oy + 203pVEeCwo ) Vmcw w y
; oW, (k)  OW,(k,1) || ( 2 3 0) of\l t) —yll,
nA
<ot (1-+ 0 + 20/ Focun) Vi (1- ) " ) = gl = mex,

where c1 = h (1+ a, + 2a3p\/kccw0)l Vimewo = (1 - %)tﬂ lw(0) — y|| ,» is a constant.

ou, _ ou,
ow k) oW (k) ||,

|

s ’ l s O T
—o(X(") (k1)) (a (W, )0 (X (k1)) © 6X‘”(kt))

Then we consider as follows:

H ou; ou;

il o (Ww® O) _ Oui :
owO (k) oW (k1) (X; (k))( (Ws (F)2(X; (k)))G (k)>

axW
F]

aiaz(by + b2)

(l)
<
max(ai,as) ’

— s 37T
where @ uses Lemma 2. For parameters a1, as, b1, b2 satisfies
) < viemas |
2 2

8ui
®
ox" (k)|

RIOES SC01 8

a1 = max (H(I)(st)(k:))’L , Hcp(x}s)(k, t))‘

a2 =max (

by = H@(xf”(k)) - ‘1)(Xi(8)(k’t))H2 =

)

— o _ Oui
(W Rex (k) o 0X " (k,t)

k3

o (W§l>(k,t)q>(x§5)(k,t)))®

’

)

Gui
ox " (k)

(’)ui

by = _ Oui
ax" (kv

o (WO mex (k) © o' (WO k. 0)2(X[7 (k1)) ©

In Lemma 10, we show that when Eqn. (10) holds which is proven in Lemma 13, then || X (0)» <
czo0. Under Eqn. (10), Lemma 11 shows

l @
1X 00 = XDl < (1+ 0z + 2a0uv/Feeun ) pvheF < e, (13)

2.2 2
where @ holds since in Lemma 13, we set m = O (w (1+ o + 2a3uv kccwo)%) such
that

— l
F:W max (1’ 2 (1 + ay + 2a3p\/ kccwo) ag%ﬂ\/ kccwo)

Cx0

< .
(1+ 0 + 205 1v/Eecun) 1v/ke

By using Lemma 11 and Lemma 10, we have
X @) <X (k) = X0l + 1% 0)]| + < 2c20- (14)

Then by using Eqn. (12) we upper bound HXi(”(k, t) H as follows:

| X2 ||, < | xS 0 -

<[[xa], + e

8x(5) aX(S)

szczo+n(1+a2+za3ufkccwo) NG fnu() ynps@,

11



2
where ca = 2c.0 + 1 (1 + agy + 2a3,u\/k:ccwo)l \/ﬁcwoﬁ (1 — %)t/

this way, we can upper bound

|lu(0) — yl| » is a constant. In

\/ Cl’I]

a1 < Vkemax (2cu0, c2) , bl <

where @ uses the results in Eqn. (10). Now we try to bound a» and b as follows:

a2 =max <

8ui
ox " (k)

6ui
oxX" (k,t)

)

2

k3

(WX k) e

o (Ws<l>(k,t)c1>(x§s)(k,t)))®

)

0 Oou; @
<pmax (H - = ) < u(1 + L)ein?,
ax (k) |, | oxP (k1) |,
@
Ou; du; Ou; _(l) _ _(l) 2 < 2 2
where @ uses ax0 0o |, S loxOas | . < ||axP® F+LHXl (k,t)— X" (k)7 < (1+L)cin
where L is the Llpschltz constant of - ou Ok In @ we use the results in Eqn. (14). Since ¢ is p-smooth

and v is h-layered, by computing, we know L is at the order of O (3") and is a constant. For b, we
can bound it as follows:

Ou: Ou: < 2u(1+ L)cin®.

ba < — <
ax (k) ox" (k1)

Therefore, we can bound
h [—1
aras( bl + b2) (l)
T a = C3
eSS alh—an

=1 s=0

a

where a3 = max o ) and c3 =

mVke max(2cwo,c2)u(1+L)cin’ VEge 2.\ ;
max(\/Emax(QCw(,,cg),u(l-ﬁ—L)lc%n‘Z,) ( 7 1 =+ 2;“/(1 + L)Cln 1S a con-

stant. By using the same method, we can bound

ou; Ou;
HaW“’)(k) oW O (k) ||
=7||®(X;) (a (W(O)(k)<1>(Xi)> 0] 8;%) - ®(X,) <a’ (W“”(k,t)@(Xi)) ® 8){2%)

F
8U7; - 8u1
axO(k)  ox k1),

(3

< 2u(1+ L)cin® = can,

where @ uses [|®(X;)||r < VE||X;|lF < V. and o is p-Lipschitz, and ¢4 = 2u(1 + L)cin. By
combing the above results, we can further conclude

IVau; (2(k)) = Vaui (K, 1)) < (c1 + c3 + ca)n = csn,
which further gives

A3 (k) <1 ppax [[VaF(QK)[p [Vau: (k) = Vaus (k) = tVa F(QE))| -

h -1
2¢s N
<n’ecs <h+ 2cpucwoVke (1 +3 Y al >> fo lu(t) — yllp = én? u) -yl

=1 s=0

where é = c5 (h + 2cpcwov/ke (1 +3 aglﬁ)) 2520 Therefore we have
Step 3.3 Upper bound H: = 2|y —u(k)|2[ Az (k)

2. By combining the above results, we can bound

Ha = 2|y — u(k)|2| Az (k)2 < én” [[u(t) - yl3,

where é = O (;u:zgci)o\/kcmh3(1+a2+2a3p\/kccwo)h).

n

12



Step 4. Upper bound H; = ||u(k) — u(k + 1)||3.

n h—1 2
(k) —uk+ D =3 (Z (w2 k), X (k) — Wk + 1), X (b + 1)>))
n h—1 9

VRS S ((Ws(k), XD (k) — (Wa(k+1), XO(k + 1)>) .

i=1 s=0
Now we consider each term:

(W k), XO (k) — Wk 1), X0+ 1))
= ((Wa(k) — Wik + 1), Xk + 1) + (Wa(h), XO) — XDk 4 1))
<2 Wi (k) = Wk + DI X (k4 D15+ 2 Wa k) 151X (k) = X0 (k + 1)

@
<820 | Wi (k) — Wik + 1)||% + 8mc2o| XV (k) — X P (k + 1)|%

232n°c% | 2 4.4 42 2t 2(a3)2c10 2
< Ccoo +4c e, ok (1+a + 2V kecwox ) 1+
hS " z0 K CyoRe 2 o[ £3% (a2+2mcwoa3u)\/ﬁ
2
k) =yl

where @ uses ||Xi(l>(k + 1|13 < 4c2, in Eqn. (14), and the results in Eqn. (11) that |W(k)||r <
IWs(k) — W, (0)||lr + [[Ws(0)]lr < 2¢/mcwo; @ holds since (1) in Lemma 13 we have |W, (¢ +
D)= W) le = o[ 2505 ]| < 21520 fue) — yllo where ¢ = (14 as + 20/ Fecuo) with e, =

l l .
maxs a;)z and a3 = max,; a;;, and (2) in Lemma 14 we have

|XOk+1) - X))

F
l 2(a3)2czo 4c7nu2czocwokc
§(1+a + 2V kecworx ) (1+ u(k) —y|, -
2 3K (a2—|—2 ﬁkccwoagu)\/ﬁ \/ﬁ || ( ) ||2
In this way, we can conclude
(k) — w(k + D)[|3 < n°¢ u(k) - yll3,
< _ 2 1.5 | 2 2 4.4 12 2l 2(cg)?ce 2 _
where ¢ = 32c¢;0h [cw + 4c* p* ey ok (1 + agy + 2\/kccwoa3/¢) (1 + (a2+2\/kfcw0£3u)ﬁ) } =

o (u4cioc§0h1~5k§ (1+ 00+ zmcwoaw)“).
Step 5. Upper bound ||y — u(k + 1)||3.
In this way, by using Eqn. (9) we can finally obtain
ly = w(k+ D5 < lly — w(k)|3 + Hi + Hz + Hs
<lly — uk) 3 — 20\ (k) — g3 + 2607 ult) - ylis +n’elluk) -yl
= (1 —nA+@e+0n°) lly — ulk)|3

(1) Iy - uiwl

where @ holds by using Hi < —2nA||lu(k) — yl|3, H2 < 2én? ||u(t) — y||2 and Hz < n?¢|ju(k) — y|2;

A
\/mu4cﬁ}0cioh3k3(1+a2+2\/kccwoa3u)

@ holds by setting n <

o ) The proof is completed.
O

A _
2(26+¢) o

C.3.2 Proof of Lemma 20

Proof. According to the definitions in Sec. B, we can write

h—11-1

h—1
IG(Hk) = GO, <[ G (k) = G O[], + > D ||&" k) = G ©)]| +> I6° (k) - 6" )],
=0 s=0 s=0

13



and

||Gls Gls(0)|

In this way, we only need to upper bound |G°(k)—G°(0 l,

1G* (k) — G*(0)]l,-
Step 1. Bound of |G®(k) — G°(0)||, (s =0,--- ,h —1).
For analysis, we first recall existing results. Lemma 13 shows
max (/W (&) = WO O, [W (1) = W), [Wa(t) = Wa0) ) < Vi < Vimewo, (15)

where ¢ = (1 + o, + 2a3u\/kccwo)l with ay = max; a(S{)Q and as = max,, ai%. Based on this

result, Lemma 15 shows

HW(O)(k)H < 2w,
F

W§l>(k)H < 2y/mcwn, [Walk)l, < 2v/mcun, HXf”(k:)H < %0
F F

(16)
Moreover, Lemma 16 shows
1% (k) = X O0) | < pvkT,  1X (k) = XPO0)|F < e(1 + 2asco0) pv/ kT
To bound H,, we only need to bound each entry in (G°(k) — G*(0)):
. e Al o, \ /o o,
50 -0 = (o awem )~ (oW W)
=[(XP ), X)) - (X (0), X7 (0))
<[(xP k) = xP0), X)) + |{X 20, X (k) - X (0))
(s) _ x (s (s) (s) (s) _ y (s
<[x2w - xP o) x5 ®], + [xC o], x5 w - xPo],
)
<4cpoc(l + 2a3cz0) uvkeT,
So we can further bound
IG* (k) — G*(0)], < Vi [G* (k) — G*(0)]|.., < deaoc(l + 2aaco)uv/EeF, (1< s < h).
Step 2. Bound of |G (k) — G*(0)||, (0<I1<h—-1,0<s<I—1).
We first consider [ = » — 1, namely bound of ||G"*(k) — G"*(0)||, (0 < s < h —2). For notation

simplicity, we use h to denote h — 1. In this way, accordmg to Lemma 8, we have

ou
owh

;
—a")ra(x ) (a’ (WS“%(X(S))) © Wh) (1<s<h—1).

Let H; = ®(X”), Hi.e = [Hilito Hiwr = [Hiler, and Zier = (W) Hi . In this way, for
1 < s < h—1we can write GJ; as

T p
Ghé = (h) Z |:Z Wh t'r i, t ((Ws(,h')‘)THl,t>:| |:Z Wh,q'rHj,:q ((Ws(h'r) Hj,:q):|
qg=1

r=1 Lt=1
ghg)T ZZH tH] qZWhtrthrU( Ltr)U/(Z'i,qr)-
t=1 g=1
Then we can obtain

|G (k) = G5 (0)]
p

P
(h) 2

thl



For brevity, we define A,, A, and As as follows:

m

A= ZZ( H.q(k) = (Hi:4(0) T Hyq(0)) 3 Witr OWhor (000" (Zuar (k) o (Zyar (),
A = ZZ(Hi,:t(o»THj,:q(O)th,mm)vvh,qr(m (0" (Zi.tr (k) 0 (25,40 (k) ~ 0" (Z1,42(0)) a’(zj,qrw)))‘ ,
As = Z Z(Hivt( Z (Wh,tr (k) Wh,gr (k) = Wit (0)Wh gr(0)) 0" (Zir (k) 0" (Zj,qr (k)| -

Then we have

G5 (k) = G5 (0)] =(a3m)* (A1 + Az + As).
The remaining work is to upper bound A, A» and As. We first look at A;:

;Zl( Hj, q(k)_(Hi,:t(0))THj,:q(0));‘/‘/’“"(O)Wh,qr(O)U/(Zi,tr(k)) o' (Zj,qr(k))
<mp’cag ZZ( i (k) Hjq(k) — (Hi,:t(o))THj,:q(O))'

Sl >3 | (B ) — Hu (0)T )] | (B 0T (B0~ H0)

t=1 q=1

t=1 g=1 t=1 gq=1

gmp2630$ Z Z | H,:¢ (k) — (Hs,:¢(0 \J Z Z | Hj,.q(F)I3

+mu2cioJZZnHj,:q<k> IQJZZIIHM )3

<mpp®cio (| Hi(k) — Hi(0)|| e[| H; (k)| » + | H; (k) — H;(0)|| ¢ || Hi(k)| )
<mpp’ciy (| Hi(k) — Hi(0)|| e || H; (k)| » + | H; (k) — H;(0)|| ¢ || Hi(k)| )

where @ holds since the activation function o(-) is p-Lipschitz and p-smooth and the assumption

W |loo < cuo. To bound ||H;(k) — H;(0)||# || H; (k)| r, we first recall our existing results. Lemma 16
that

IXP (k) = XP(0)||F < (1 + 20520 uv/ker,

where ¢ = (14 as + 203k CwO) with a, = max a< ) and a3 = max, ab 3 Here 7 is given in
Lemma 13. Based on this result, Lemma 15 shows that (16) holds. So we have

| H; (k) — Hi(0)||r <[®(X (k) — (X 0)]Ir < VE) X (k) — X7 (0)]| o
<c(1 4 2a3c00) ke, (17)

IH; (k)| r =[19(X Y (k) F < VEN XS (R)|r < 2vVkeCwo,

which indicates

(ILEE: (k) = HE(0)| | () L+ (LK) — EE (O)]| [ (K) 1) < Accuo(1 + 2ca0)pkt*F.

Therefore, we can upper bound

A < 4cmpu3ki‘503()cwo(1 + 236407

Then we consider to bound A,. To begin with, we have
|0" (Zier(K)) 0" (Zjqr (k) = 0" (Zi4(0)) 0" (Z,4-(0))]
< (0" (Zier (k) = 0" (Zi,r(0)))0" (Zj,qr (k)| + |0" (Zi,6(0)) (0" (Zj,ar (k) — 0" (Z,4r(0)))]

i 0" (Ziir (k) = 0" (Zi.1r(0))| + 1|07 (Z.qr (K)) = 0" (Z5,40(0))]

®
Spp|Zir (k) — Zier (0)| + pp | Zjgr (k) — Zj,4r(0)]

15



where @ holds since the activation function o(+) is p-Lipschitz; @ holds since the activation function
o(-) is p-smooth. Therefore, we can upper bound

A2<ZZ\HM Hj.q \DWMT 0)Wi,0r(0)]

t=1q=1

(0" (Zisr (k) 0" (Zj.gr (K)) = 0" (Zi,4r(0)) 0" (Z5,4r(0))) |

SW)ZZ‘(Hi,:t(O))THj,:q(O)‘Z\Wh,tr(O)Wh,qr(O)l[\Zi,tr( )= Ziir(0)[+12,ar (k) = Z;,4 (0)]

t=1q=1

<up\j ZZIIIHZ +(0)[13 1 H . (0)]13 N ZZ <Z|Wh tr(0)Wh,qr(0)] Zi,tr(k)Zi,tr(0)|>

t=1qg=1 t=1¢g=1

\JZZ (ZWh tr(0)Wh,qr(0)[ [ Z;,qr (k) — Zj,qr(0)> ]

t=1g=1 \r=1

<ppcuoy'm || Hi(0)|| p |1 H; (0)]| -

[\jiii|zi,tr(k)—zi tr JZZZ|ZJ o J”(O)|2‘

t=1 g=1r=1 t=1 g=1r=1

<ppcuor/mp | Hi(0)|| o | H; (0] [1Z: (k) = Zi(0)l - + 112 (k) — Z;(0) | ] -
From Eqn. (17), we have ||H;(k)||r < 2vkccwo. Lemma 13 shows that Eqn. (15) holds. Based on
this result and the fact that 7 < c,,0, Lemma 11 shows
Hst”(k)cb(X(s)(k)) - Ws(”(o)@(x(s)(()))H < ke
F 3

Therefore we can bound

8emkl®c2 o upcuo N
Q3 ’

A; <

Now we bound A3 as follows:

ZZ 1:6(0) " Hjig(0 )Z(Wh tr-(k)Wh.qr (k) = Wi, 12 (0) Wi, qr(0)) ' (Zi,1r (k) 0 (Z54r (K))

Z Z H;:q(0) Y (Witr (k) Whigr (k) = Wh.er(0) Wi g0 (0))

(|Wh tr(k) = Whtr (0)[[Wh qr (k)[4 Wh tr (0) [| Wh g (k) = Wh 4, (0) )

Msn

>y

(HL20(0) H o (0)] 3

<y N (Hi,:t(O))THj,:q(O)’ ([IWh.t: (k) = Wi 4:(0)[|2]| Wh.q: () || 24 |[Wh,e:(0)[|2[| Wh,qr (k) = Wh qr (0) |2)
\JZZHFL (013 11 H,:4(0)3 NZZlWht = Wi t:(0)[|2|Wh.q:(F) |2
+\J DD IWas(k) - Wh,t:(0)||2||Wh,q:(/<f)||2‘
<P [ Hi ()| [1H 0) | g [ Wi (k) = Wi (0) | 2| Wi (k)| 7 + [Wa(k) = Wa(0)|| | W (k)| ]
28]60”20;10771?,

where @ holds by using Eqn.s (15), (16), (17).
By combining the above results, we have that fors =0,--- ,h — 1
|G"(k)=G"*(0) |2 < V|G (k) — G5 (0)] o

2¢k% " cpopcu
== “uophove 0\/54-2#(;?00)'

<4(a")) kepcwon”*F (cpfk;’f’cio(l + 2a3¢20) + o
3
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Then we consider 1 < ! < h, namely bound of H;; (0 < s < h —1). For brevity, let B;(k) =

—9¢_ Here we use the same strategy as above. Let
ax (D (k)
AwZZ( 1) Hj g (k) = (Hi0(0)) T H o )ZBz 0 (0) B (0)0” (Zir (K)) 0 (Zj ar (R)),
t=1g=1
P P T
Ar=3"3"Hi i (0) TH o ZBZ 2 (0) By (0) (0 (Zi.r (k) 0 (Z5,00 (K)) 0’ (Z5,0(0)) 7' (25,4 (0))).
t=1g=1
p P m
T / /
Asij= > (Hiut(0)) Hjuol Z i,tr (K) Bjgr (k) = Bi,tr(0)Bj,qr(0)) 0" (Zier (K)) 0" (Zjqr (K)) -
t=1 g=1 r=1

By assuming || B;(k)||s < cuo0, We can use the same method to bound A, and A, as follows:

- 8emkl®c2 oupc 7
|A:] < 4cmp,u3ki'5ciocwo(1 + 2a3c20)7,  |A2| < oHp uo\/ﬁN.

Then we need to carefully bound As: -
s fZZ L O)H, q<o>§<3m<k>3j,qr<k>—Bi,tr<o>Bj,qr<o>> o (Zoar () (Z ()
<4 Z Z H,.0(0) ij; (Buir (0) By (K) — Bur (0) B0 (0))
>3 H, . 0 )\iaa o B) = B (O)] By (B) 4B (0)| B ()~ By 0 0))
<y H, (0] (1Bt (0~ B (0o By ) s+ B (OB (0)— B 0)2)
J;Zlmmt 1.0 NZ 113.04) = B O30 )

+\j YD IBis(0)I3]1Bj.q: (k) — Bjg:(0)]3

<p® I1H:(0) || o | H;(0) | [ Bi(k) — Bi(0) || ¢ l|B; (k)| + [ B; (k) — B; (0)]| 7| Bi(0) | ]
<420 [|Ba(k) — Bu(O) [ 1By ()| + 1B (k) — B (0) [ BL(0) ],

where @ holds by using Eqn.s (15), (16), (17). Then when for ¢, =
Lemma 12 shows

Z=llw’ —yllo and e = Wi,

l
< (1 + ay + azpuVke(r + cwo)) CyCu

(l)
x|,

nA

®
<2cyv/mcwo (1 — 7) ||U«O =Yl

where ¢ = (1 + s + 2a3u\/kccwo) a, = max;, a< ) and a3 = max,,; a''}. @ holds since ¢, =

[Willr < [[We=Wollr+[Wollr < vm(7+cuwo) < 2fcwo and [lu’ —yll2 < ( — )" u® — |2

in Theorem 19. Lemma 17 proves
oot

ox{"(k) 2x{"(0)

2 ~
< crecasCpyoCaopkemt,

F

where c; is a constant. The remaining work is to bound

IBi(k) — Bi(0)[ < [|B; (k) | » <creasciocoopkemt]| B (k)| r-

17



In this way, we have

| As|lx <ZZ [ As,ij| < 4p CwoclcaacwocxopkcmTZZ |B; (k)||r + Bi(k)||r)

j=11i=1 Jj=11i=1

_ A t/2
<8cinp’c*asciyocao pkem' T (1 - %) [u” = ylla-

Then combining all above results gives
6" (6) = 6" 0)]|, =(al37)7 141 + A + As], < (@l37)? (|Asl, + [[Azllz + ]| Asll,)
<3V (| At + [[As]l + | As]],)

2ck2S cope
<A(03) hepcwon” T <0pu2k2'5cio(1 + 203¢20) + W)
, o

B L
+ 8(042733)2nclu202agci,oczopkcmo'5r <1 - %) HUO = Yll2.

In this way, we only need to upper bound |G°(k)—G°(0)|,
1G*(k) — G*(0)]l,.

Step 3. Bound of |G°(k) — G°(0)||,,-

HGls(k) _ Gls(0)|

B

Here we use the same method when we bound ||G"* (k) — G**(0)|, to bound ||G° (k) — G’O (0)]|,- Let
H; = ®(X,), Hi.w = [H).t, Hipr = [Hilew, Ziwr = (WD) Hi .y and Bi(k) = m o+ In this

way, for 1 < s < h — 1 we can write G{’f as Then we define

Alfzz( H,q (k) ~ (Hioa(0)) THy o )ZBz (0)By4r (0)0" (Ziar (k) &' (Zjr ()
A —ZZ 1:t(0)) Hy g (0) Y Bt (0)Br (0) (0 (Zitr (k) 0 (Z.r () =0 (1.0 (0)) 0 (25,00 (0))
Az = > (Hi4(0)" (0) > (Bi,tr(k)Bjgr(k) = Bitr(0)Bjqr(0)) 0’ (Zier (k) 0" (25,40 (K)) -

Then by using the same method, we can prove

”G‘O(k) _ GO(O)HQ =77 || A1 + Az + A3, < (« ihg )2 ([ Azl + | Az]l2 + || As]l,)
<V (| Al + | Azl + [|As]l;)

_ 2ck2‘5c C
§4kc,ucwon0'5r (cqukS'E’czo(l + 2a3¢q0) + W)
(8 %

NE
+ 8cinp’ascd gcoopkem® ST (1 — %) ||'uO —yll2.

Step 4. Bound of |G (k) — G(0)]|,.

By combining the above results and ignoring all constants for brevity, we can bound

h—11-1

IG (k) = GO, <G (k) - G°O)],+ > D" ||6" (k) - 6" 0) +Z||GS Ol
=0 s=0

§020huk2‘5czorn (phu kecocwo + agcph/,Lk ? zono,s)

where ¢ = (1 + o + 2a3m/kccwo)h and c; is a constant. Considering

<

_ h
= M max (17 2 (1 + ay + 2a3M\/kccwo) agux/kccwo) < Cwo,
Av/mn

18



to achieve

>

16 - GO, < 3,

m should be at the order of

2,2, 2 2
czazpkecioC
- )\2n )

where cs is a constant, ¢ = (1 + o, + 2043#\//?:611)0)]1, Qp = Maxs aif)z and a3 = max,,; o 2)3 The
proof is completed. O

C.3.3 Proof of Lemma 21

Proof. Lemma 19 proves that when m = O (w (1+os+ 2a3ufcwo) ), then with
probability at least 1 — /2 we have

w9l < (1) jy—wt - i < (1- 2y - w2,

where ) is smallest eigenvalue of the Gram matrix G(¢) (¢t = 1,--- ,k—1). Lemma 20 shows that if m
2 2 2 2
satisfies m > W, where cs is a constant, ¢ = (14 a, + 2a3u\/kccwo) Qy = max, aié

!
and a3 = max, ai},, then we have

)\min G(0

Gk - GO, < 2= (EO0),

where Amin (G(0)) is the smallest eigenvalue of G (0). So we have
Amin (G(0))

Amin(G(t)) 2 2

So combining these results, we have

ly — u(0)]3,

GO\
4 4 )

Iy - w(k)ll: < (1 - M) ly —u(k— D < (1 _ Mmin (G(0))

. k2 DY
when m satisfies m > % and n < %, where ¢,,c;, are constants, ¢ =
(1+ o0+ 2a3m/kccw0) Qy = max aié and o = max,; a''}. The proof is completed. O

C.4 Step 2 Lower Bound of Eigenvalue of Gram Matrix

Here we define some necessary notations for this subsection first. By Gaussian distribution P over a g-
dimensional subspace W, it means that for a basis {e1, e2, - - - ,e,} of Wand (v1, vz, -+ ,vq) ~ N(0,I)
such that 3°7_, v;e; ~ P. Then we equip one Gaussian distribution ) with each linear subspace W.
Based on these, we define a transform W as

E o
W(ls)( K) = EWt ~P

[W(”K(W“))T], ifl=sandt=gq

W,,(”~7>,W(§3>~p[ K(WSM)T], otherwise

where K € R”*? and W," denotes the parameters in convolution.

Then we define the population Gram matrix as follows. For brevity, let X = ®(X) € RF™*?_ We
first define the case where [ = 0:

bV=0erR, K Y=XxX, QY =X"X, erR,
A00) _ W(O)(Q( 1))7W(O)(Q§j1)):| (M(OO) N(OO)) NN(O A(OO))
wOQS), w(@;;) ’ ’
b = 7B 00 o (M), K7 = B0 oo, (U(M(OO))U(N(O()))T) ;
Qi =Tr (K‘f‘23>,s<<>) 7
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where WO(K) = Ey ) p[WO KW )T, QY € RP*P, K% denotes the (a,b)-th entry in
K, and S = {j | X.,; € the a — th patch for convolution}.

Then for 1 <1 < h,1 < s <, we can recurrently define

s W(lS) Q W(lS) Q 9 s s ls
A§51> = |:Wt(llzs)EQ(tq); W(ls)EQ(tq); (Mt(q )7Nt(ql{ >) ~ N (OaAEq )) ) (0 S tvq S l— 1)7
-1
b0 = 3 (ol + ralE, o L))
t=1

1-1s—1
ls I (s l Is 0 (s Is)\ T
K0 = z{ag; KD 7 0 o, (@l do (M) B + ajallbo(NL?)
t=1 q=1 4 B
l s ls ls T
Frogol 3o (Mg )o(NG™) )]
a1 (k, )

15,50,

where K“s) € RP*P, Q”s) denotes the (a, b)-th entry in Q”s) and 5 = {j | X<s Y ¢ the a —
th patch for convolutlon} Flnally, we define

A _ {W:Z;(Qi”j) W%:i(QE”;)]
ss (Qﬁ )7 ss (Q )

Qs = QS UE oy acne’ (M) (N)T . K, =T (Q), (s=0,h = 1),
For brevity, we first define

(s 1 i l SINT (1l 1 S l
R0= LS x0T B = LSt x0,
t=1 t=1

Then we prove that K is very close to the randomly generated gram matrix K, i(;s).

Lemma 22. With probability at least 1 — 6 over the convolution parameters W in each layer, then
for0 <t <h,0<s<h,itholds

m

Ly xOTx® gl < o/ oerh/0)
m — ©S 758 ] — m )
and
Z X0 0| <oyl rEh?/0)
K2 — m )

where C is a constant which depends on the activation function o(-), namely C ~ o(0) + sup,, o' (z).

See its proof in Appendix C.4.1.
Lemma 23. Suppose Assumptions 1, 2 and 3 hold. Then if m > M, we have

<é (5207"'7h)7

hs _ (h)\2 g~ (s)
ORISR S

where c4 and \ are constants.

See its proof in Appendix C.4.2.

Lemma 24. Suppose Assumptions 1, 2 and 3 hold. Suppose o is analytic and not a polynomial
function. Consider data { X[, };_, are not parallel, namely vec (X;) ¢ span(vec (X;)) for all i # j.

2,2 2

Then if m > %log(”/é) it holds that with probability at least 1 — §/2, the smallest eigenvalue
the matrix G satisfies

h—1 s—1
Anin (G(0)) > 22 3™ (a1))? <H<a§2> ) Amin ().



where X\ = 3¢, Z:‘:—()l(aggf ( o (aisg) ) Amin (K), ¢o is a constant that only depends on o and

the input data, Amin (K) = min, j Amin (K;) is larger than zero in which Amin(Kj) is the the smallest
X, X5, X, X]}

eigenvalue of K;; = {XJTXi, X7 X,

See its proof in C.4.3.

C.4.1 Proof of Lemma 22

Proof. We use mathematical induction to prove these results. For brevity, let X = ®(X) € RFe™x?
and X, , = X,',. € RP. For the first layer (I = 0), we have

X =10 <Z Wtf)X,,t) (18)

t=1

Then let

ALY =S wiX,,. (19)

t=1

Since the convolution parameter W satisfies Gaussian distribution, AEOS): is a mean-zero Guassian
variable with covariance matrix as follows

£ [(40)7AY)] =E S WO X (X, ) (W) =50 (Z XX) =0 (@),
t

t,t!

where J5; is a random variable with §s; = +1 with both probability 0.5. Therefore, we have

|: Zx(o) X(O) _ K(QO) |: ZX(O>:|
1] )

In this way, following [4] we can apply Hoeffding and Bernstein bounds and obtain the following

results:
(max
J,t
1+ 100 max; ;s ¢, Q' ”)St\. Here @ holds by using Lemma 10. Similarly, we can prove
( Z X(l) bEU
m

Then we prove the results still hold when [ > 1,1 > s > 0. For brevity, we first define

Suppose the results in our lemma holds for 0 <! < k,0 < ¢ < [ with probability at least 1 — E& For
2516, Toward thls goal,

X(O) K(OO)
Z p 7

S\/16(1+2012/\/7?)M21og(4n2p2h2/<5))>>1_5

oo

@ 2
< ¢io, M1 =

oo

where we use | X (X)) T < IXQ XD TIF < 051X + 1XD)7T13)
ij
- \/QClMlog(2nph/6))> Syt
K9 = ZX(Z) X7 b = ZX(Z)

we have

x0- Y {X}fj—i—ra (ZW;QSX@))]

0<q<i—1 t=1

where 7 = \/—% Then let

A(lq> Z Wq(,lng(q)

i,8
t=1

Similarly, we can obtain Agfg) is a mean-zero Guassian variable with covariance matrix
l Ir)\T l (
E[Al2(AlD)] = 5w (ZX(‘” ) ) 5.5 (Q1).
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Note that since for convolution networks, each element in the output involves several elements in

the input (implemented by the operation ®(-)), we need to consider this by combining the involved
elements. Therefore, we can conclude

where K| Z(Jlsib denotes the (a, b)-th entry in K| f;s), and S8 = {j| X fj’fl) € the a—th patch}. Moreover,
we can easily obtain

-1

E[6Y] = 3 (80 + rallE o (B1))

t=1
In this way, we can further obtain

. (l)(Q(tq)) W(U(Q(m)) .
A = | Wi (9 (M) Ny~ N (0,47)),  (0<tg<i-1),
@@l M "
-1 s5-1
7-(ls s s ~r N X < T
B[R] =03 [aldaldRUY + 75 50 s, (aldaldaGEDE)T + a6 o(N)
t=1 g=1

—~. T
+raljallo(M)o(NY) )| e R,
Then we also apply the concentration inequality and obtain that for 1 < s <1
2 2 212142
b <max . \/16(1 +2C2/\/7) M2 log(4n2p?h /5))) 1
) m
where we use || X (X)) [l < | X{ (X)) e < 051X E + 1X))TIF) < o, My =

1+ 100max; j,s,¢,0

According to the definition

RET= DS XQ00NT 6= LS X
t=1

L () g (NT _ mge(ls)
szi,t(Xj,t) _EKz'jg

t=1

(K l 1>)St|. Similarly, we can prove

. \/QClMIOg(anh/(S))) >1-6/h2

m

Z x!") —Eb"

o)

we have
LS 5@ x T _ || < || LS x®(xenT _ gt ERUS _ g9
EZ 0 (X57) — Ky = EZ 0 (X57) — ij + i ||
t=1 - t=1 o
1 ! 1 1 «— l 2~ N l
> ox—b| <| = xD —Eb |+ |[E |
t=1 0o t=1 oo
Then we only need to bound
|‘EE§§SLK§;S> and HIEBZ(.” 7b§.l>H
o0 oo

In the following content, we bound these two terms in turn. To begin with, we have

R _ g
|EKSY - K

(s) (s) HD O]
(Q] 5 S(z;)) Tr <Q 1,809 S(m))HOO < HQ” -Q;; -

<S5 [alhal R - k0|
t=1 q=1
+ ralhal?) [ azen, gy e MBI T = Eagin sy s (M) ®)T|
+ Tagl;a((;; ‘E((M(tq) N<tq)))b U(]/V\(tq))-r - E((M(tq),N(f«z)))I’z('t>(7(]\r(tq>)T Hoo
+rafol) ((A”Z(tq),ﬁ(m)))U(M(m)U(ﬁ(m)T - E((M(tq),N(fq)))o'(M(t(n)G(N(tq))—r HOJ
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Then we bound
AT N T T
| w00, 100y e BT BN T = Eagiear ey o (MDY
7 T T
= ||E (a1 200y S BT = gy atian oM O T|

< HE((M’N)NK(W)J(M)(b;Q)—bé-Q))THOO—&-H [E 0y ey 7V = (01,51 a0, 7 (M) (b;.‘”)TH

[ee]

Next, we bound the above inequality by bound each term:

;
| a0y ) = B ag a3

< max|[b{” || ((0) + sup o’ (@)) | A“D — AP

<C10203|‘Q(tq) Q(tq)”oo

(1s) (1s)
(R s0) =T (K5 o0 )|

<cicacsq HKl(Jl) _

=C1C2C3 max

El

where ¢1 = max; 1+ W ||z o, ¢z = 0(0) + sup, o’ («), ¢5 = maxi ¢ [|b'? || Similarly, we can
bound

N - N
[ ot e MDE? =) <eavicales? 57
where ¢y = max;; HQ( 1)) o < gmax;; HESC‘))HM < gcZyand 1 < q <1 — 1. Therefore we have

U )
B 5700 60y o )BT = Eagienr ey s (M) (0f)T |

=(c1c2¢3q + car/CrCa) max (||f<\§;q> — K|, B — B\ ||o<,) .
By using the same method, we can upper bound
t T
HE«M(W NWﬂ))b U(N(tq)) - E((M“G%N“qh)bg Ja (N Hoo

=(c1c203q + ca+/CiCa) max (H (tq) (tq)Hoo ”b(q) E;q)Hoo).
Next, we can upper bound

— — T T
(D 71’\\’(tq)))0'(M(tq))O'(N(tQ)) _ E((M(tq)7N(tq)))U(M(tQ))O'(N(tq)) H
T T
=B atz0y e, e LD (N D)~ E g ) pivany o (ML D)r (N |
<eo| A — AU e < erer Q) — Qe < cocrql| KY) — K)o,
where ¢, is a constant that only depends on o. Combing all results yields

HEK(ZS) K(ls)

) )

oo

! l T
< [(af2al + Pallalleoeiq) [KS?) - K§)llw

+r(ahall + allal))(eieacsg + cay/eren) max (| K = KG2 oo, 657 57| )|

<c max (”K(tq) (tq) H ||b§.q) i Bga) ||oo)

1<t<1-1,1<q<I—1
where ¢; = i;i ZZ;} [ail% (s) s+ T a%ag ;cgcm + r(agl;af;; + %ag )(c1c2c3q + 02\/0104)}.

Since we have assumed that w1th probability 1 — (I —1)26/h* for0 <t <1—1,0 < s <[ —1, it holds

1 & 1 & 1 2p2h2
max<mz( (t)) (q) KSQ) EZ Z(ts) BV >§011 og(n?p?h?/9)

m
s=1 s=1

bl )

oo
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where C is a constant. Then with probability 1 — (I — 1)?§/h?, we have for all 0 < s <1

log(n?p*h?/9)

EK® _ g
xS - K .

<caCi—a
oo

Thus, with probability (1 — (I — 1)26/h*)(1 — 6/h%) > 1 — 125/h® > 1 — §, we have for all for
0<t<h0<s<h

i X(t) X@) —K-(t-q) <C log(n2p2h2/5)
J»s ij = m ’
where C = Cj th:1 ¢ 1s a constant.
Now we consider to bound
|
-1 R
I3 (3B = 6 + 70 (g 10o(M) — Eagario (M)
t=1 (o)
1
( b(t) +T0€(l) H(EMNZU—l)tU(M) _]EMNA(Z—l)tU(M))H )
t=1 o°
l 1
<3 (@[50 69| _+ral) HAu be g )
t— 1 oo o0
l 1
< (ail; Hb(t> b(t) JrTa lger = gu-nr )

a(l) + Toy Scaclq) max (HBE” - bl(.t)

Hf{\(z—m _ gDt
007

2

where ¢} = i;i (ai ) + Tatl%cgmq) Then with probability (1 — (I — 1)2§/h)(1 —3§/h) > 1 — 4§, we
have forall for0 <t < h

ZX(,g) (t) <C log(n2p2h2/5)
i m )
where C' = Co [1"_, max(ci, ¢]) is a constant. The proof is completed. O

C.4.2 Proof of Lemma 23

Proof. For brevity, here we just use Xi(s), w, W, X}S)) to respectively denote Xmii(s)i(0)
W(h)( 0), Wi(0), (X, () ), since here we only involve the initialization and does not update the
variables. Let X S)) (X <S>) and Z, ;, = (WS(,’TZ)TXZ.(;)). Firstly according to the definition, we
have

Gl 0) = (o5
owM (0)" owi™ (0)

=(a)r)? <q>(X§S>) (a’ (Wy)@(xi(s))) o Wh) ' L (X)) (a’ (W§Z)<1>(X]<,S>)) o) Wh)T>

(a)7)? ZZX<S) (XN Wi oo Wigr0' (Zir) 0 (Zi.ar) -

t=1 q=1 r=1

Then by taking expectation on W ~ N (0,I) and U ~ N(0, I), we have

m

G (0 (h ZEX(S) X(& ' Z]EW;L (Wh.tr Wh,gr] By o) [0 (Zitr) 0" (Zi.ar)]
t=1 g=1 r=1 (20)
—(a®)r)? ZX(S) X )T ZEWW o' (Zir) o' (Zjar)]

t=1
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where @ holds since Ew, [Wh,trWh. qr] = 1if t = g and Ew, [Wh,trWh qr] = 0if t # q.

=S WI)TRE),

t=1

Since the convolution parameter WM satisfies Gaussian distribution, Z;,» 1s a mean-zero Guassian
variable with covariance matrix as follows

E [(Zi,r)TZj,q] :EZ(Ws(,h> X(S (X ) (WS(? ) =6, W(hS) <ZX s) X(S)) >

t,t!

=5,V (@),

2n

where 4., is a random variable with é,; = +1 with both probability 0.5, and
Z){(‘5 X( S\T 7 QE;5> _ Zx(é ){(‘s
According to this definition, we actually have

Qo= (R0 ).

S0, 50
where Ki(;s) € RP*P, QEJSZ)I, denotes the (a, b)-th entry in QE;”, and S$¥ = {j | X:{‘;‘,’l) € the a —

th patch for convolution}. Then according to the following definitions

A _ W@, Ws(?)(éz(;s))
W(h>(Q(SS)) W(h)(é(ss>)
SSs J]
ng?ab = éz('gs'iz)bE((M,N)NK(S))UI (M)o' (N) ", Kz(;a,b =Tr (Q ) ; (s=0,h—1).
and Eqns. (20) and (21), we have

E[GH0)] = @WK, E[G"0)] = @)’ K.

1y

In this way, we can apply the Hoeffding inequality and obtain that if m > O (M)

< A

G (0) — (a2 E®
[ ORIC e N

On the other hand, Lemma 22 shows that with probability at least 1 — §

2,212 ®
<c [log(n2p?h?/§) < )\7
oo m n

C§n2 log(n?p2h2/5)
22

|KG K

where @ holds by setting m > O ( ) Moreover, Lemma 10 shows

1
— < [|XP )] < cao-
Ca0
where c;o > 1 is a constant. So HK(”) |l is upper bounded by 2.

Next, Lemma 7 shows if each diagonal entry in A and B is upper bounded by c and lower upper
bounded by 1/¢, then

l9(A) = g(B)| < ¢l|A = Bl|r < 2C1[|A = B|cs,
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where g(A) = E(y,0)~n(0,4)0(u)o(v), C1 is a constant that only depends on c and the Lipschitz and
smooth parameter of o(-). By applying this lemma, we can obtain

QUL E s nye it [0 (M))o (N)] = QD E s wy s [0 (M))o (N)] |
<R, (Binr o) [0/ (M) (N)] = Eng ez [0/ (M) (V)] ) |

+ Q55 = Q5 E s Ny~ ate) [0 (M) (N)] |
Sclcio\ﬁ(” - AY| 4+ M2|ngsr)q - Ssr)q|
<C1Oachomax| Q) — Q7+ 1°1Q5, — Q|

<(C1Cacko + 17)1QLY — Q1|

(ss) (ss)
Tr (K],S< ) st >) Tr <K o) S(e))H

(1ol + ') || K - K

S(C’lczcio + ,u2) max

)

Where 02 =1+ ||W(}>HL°°~>L°°
Then we can bound
IR~ Koy < [KO = KO = 33 [ (@) - (@)
i=1 j=1

n n P =R 2
Z ZPZ [ng,)rr - Q’E;!)TT]

<
i=1j=1 r=1
Sheite Q¢ E (s9) p 1
< Zzpz ij,rr (M, N)~A))T (M”') U/( ) ng rr ((M N)~A()T (M )U,(NT)
(( ) )
i=1j=1 r=1
n n P - B
<\ 202082 D (CiCacty + )P KT - K%
i=1j=1 r=1
<(C1Cacsg + p*)Cap® A
)
)
-8
. 1 .
where @ holds by setting C5 < (TR In this way, we have
s h s h Z-(s h T (s (s A
6" - (@) < &0 - @RS @l RO - KOs g
The proof is completed. O

C.4.3 Proof of Lemma 24

Proof. To begin with, according to the definition, we have

-1 s—-1

s 1 S\T 1 s T
KL 00T = 35 [adals (K17 - o0 60))

+T aﬁl;a( |:E(M(“)

tq

ls 1s)\ | ls ls
NGO o (M) (N —EM&M(M;Q >)EN<1;>J(N( ) H

By defining

tq

ls ls T ls ls T
R 800 [a<M£q>>a<qu ) o (M{)o (N >>T]
Nia N o(NIo (M) o(NS o (NS)

o(My")

_ (DN (1s) T}
E<M§;S>,N§;“>>{ (N [P o o) Lo (NG ]
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we can further obtain

Kls) K(ls b(l)
i (T (p(NT
o gelta| = [yl | [T @0)7]
Ju 13
-1 51 (ta) go(tq) ®
_ ) K;", K, b; ONT (@ T ) ol R
55t R - oo et

Let

ls
—E (s s (M( )
(M, Ny ) J(N(lS))

Then we have

R —E [R L) (R{)T ] = 0.

(M) Ny

Therefore, by induction, we can conclude
K(ls) K(ls) b(l) K( 1) K( 1) b(*l)
NT (BT | i —I\T (=1\T
[Kﬁs) wclor| = o] [T @] e | [ g | = [ @7 0]
K( 1) K( 1) o
ta |:K 1) K(7 1) b O

where a is a constant that depends on a (Vl t), @ holds by using Lemma 5 which shows that
K » 0. Based on this result, we can estimate

KO ] [p0
ay’ dz) W [(b£l>)T, (b(-”)—r}
K: K b- ¢ J

ji o

(tq) (tq) (t)
) o) K", K b; ) (@
Z [ HK(.’.‘” (’tg)] {b(t)] [CRMGOM
[3 J

1

p"q .

K(tt) K(tt p® )
i ) ()
[ HKJ(E”, o] = |plo )7 6]
K( 1) K( 1) b(_*l) N
i -1) (=1)
> HK( 1) K(i ) B PREES [(bi )T7(bj )T}
J
(=1) (=1)
) K K
atz > [K( ) K(’ 1>]
Then there must exit a constant ¢ such that

-1
Amin (K™) > (H(ail;) ) Amin (K).

+raflal, Rl m]

~ =
._.,_.

II&

l 1l
+r(all)y? Rgs]

t=0

N KD gD
where K = | ‘""" 4| . On the other hand, we have
KV gD

50,50

Q=1 (K 0 ).
where S{¥ = ={jlX; “71) € the a — th patch for convolution}. This actually means that we can obtain

Qiél) by using (addlng) linear transformation on K () " Since for all Q<”) we use the same linear

transformation which means that Q'“ by using (addmg) linear transformation on K. Since linear
transformation does not change the eigenvalue property of a matrix, we can further obtain

-1

Amin (@) > <H(a§f;>2> Amin ().

t=0
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Finally, let Q = BSB" be the SVD of Q and Z = S*/2B" denotes n samples (each column denotes
one). Since Q is full rank, the samples in Z are not parallel. In this way, we can apply Lemma 5 and
obtain that Q®) which is defined below, is full rank

h 11 h 1l
W{lh; (Q%liL W(’ )(Qiuz)
Wi (@), Wi @) |
1 i) l <
Q’Ej>ﬂ.b QE] ab]E((M N)NA(Z))U (M) 0/ (N)T ’ K’L(j)ﬂ.b =Tr (QE;)) ’ (S = l7 e >h - 1)

Recall that Lemma 10 shows

AL —

1
— < I XP0)]r < coo.
Cz0

where ¢,o > 1 is a constant. Therefore, we have K!! = (X (0), X (0)) € [1/c2, 2] and thus
i = (@(X(0)), 2(XV(0)) > (X1(0), X1(0)) > 1/c, and Q}f = (2(X“(0)), (X (0)) <
k(XD (0), XV (0)) > k./c2y. Then we have
QY = QUEmtnono’ (MZ:)o' (MZ;)"

where Z = SY2B" and Z; = Z.; in which Q" = BSB" is the SVD of Q". Since Since Q" is full
rank, the samples in Z are not parallel. Then we can apply Lemma 6 and obtain

-1
Amin(QY) > ¢, <H(a§2> ) Amin (K),

t=0

where ¢, is a constant that only depends on o and input data. Since

K, = T_r(ng.’) L (s=0,h—1)

ij,a

which means that K can be obtained by using adding linear transformation on Q‘®. So the
eigenvalue of K also satisfies

-1
Amin(KD) > ¢, (H(ayg) ) Amin (K),
t=0
In this way, we can further establish

h—1

ESNOR (s) A
> 3 (@) (K“0) -5

s

A (G(0)) 2 3 A (G(0))

EM

h—1 s—1
3¢ (h) (s)\2 =
e 5 el (TTef ) o),
s=0 t=0
where @ holds since we set A = co 3" (alf))? ( f;g(aifg)Q) Amin(K) and Lemma 23 shows
(o) _ (MR < A 0.
|e" @ - @i EO| g =0
where ) is a constant. The proof is completed. O

D Proofs of Results in Sec. 4

D.1 Proof of Theorem 2

Proof. We first prove the first result. Suppose except one gate gS t, all remaining stochastic gates g(l )

are fixed. Then we discuss the type of the gate g<l) Note g, 1 denotes one operation in the operation
set O={0.};—, including zero operation, skip connection, poolmg, and convolution with any kernel
size, between nodes X ) and X, Now we discuss different kinds of operations.

If the gate g ) is for zero operation, it is easily to check that the loss F. Fq(W*(B),B) in (2) will not
change, since zero operation does not delivery any information to subsequent node X ).
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If the gate gglﬂ is for skip connection, there are two cases. Firstly, increasing the weight ggll

gives smaller loss. For this case, it directly obtain our result. Secondly, increasing the weight
gg gives larger loss. For this case, suppose we increase ggli to gill + ¢. Then node X will
become X + X () = Xc(:%nv + Xr<1l())nconv + X ®) if we fix the remaining operations, where
X él()mv denotes the output of convolution and Xr(ll())nCOIlV denotes the sum of all remaining operations.
Now suppose the convolution operation between node X and X is g,conv(w{’; X)) =

gif)ta(Ws(”@(X (*))) where t denotes the index of convolution in the operation set . Then we consider
a function

gllo(We(X D)) = —eX). (22)
Since for the almost activation functions are monotone increasing, this means that o() does not change
the rank of W’ ®(X (*)). At the same time, the linear transformation ®(X ) has the same rank as
X (). Then when ggli # 0 there exist a W." such that Eqn. (22) holds. On the other hand, we already
have

g0 (WI(X™)) = Xiony-
Since we assume the function o() is Lipschitz and smooth and the constant e is sufficient small,
then by using mean value theorem, there must exist g{}o (W ®(X)) = X3y — X ). So the
convolution can counteract the increment ¢ X ®) brought by increasing the weight of skip connection.
In this way, the whole network remains the same, leading the same loss. When the weight of
convolution satisfies ggli = 0, we only need to increase gill to a positive constant, then we use the
same method and can prove the same result. In this case, we actually increase the weights of skip
connection and convolution at the same time, which also accords with our results in the Proposition 2.

If the gate gg is for pooling connection, we can use the same method for skip connection to prove
our result, since pooling operation is also a linear transformation.

If the gate gill is for convolution, then we increase it to ggli + eggl and obtain the new output

1+ e)Xélo)nv because of ggfza(Ws,(l)@(X(s))) = Xélg)nv. If the new feature map can lead to smaller

loss, then we directly obtain our results. If the new feature map can lead to larger loss we only
need to find a new parameter W." such that ggfla(WS(l)@(X(S))) = ﬁXél()mv. Since for most
activation o (0) = 0, we have gﬁfia(ng)d)(X(S))) = 0 when W{" = 0. On the other hand, we have

l l s l
goWhe(X @) = XZ -

and the constant € is sufficient small, then by using mean value theorem, there must exist W such

l 12 (1 s l
that g{}o (W @(X ) = 11 XE -

Moreover since we assume the function o() is Lipschitz and smooth

Then we prove the results in the second part. From Theorem 1, we know that for the k-th iteration
in the search phase, increasing the weights ggl% . (I # h) of skip connects and the weights gi’fé of
convolutions can reduce the loss Fi...,, (W™ (8), 8) in (2), where ¢, and ¢, respectively denote the
indexes of skip connection and convolution in the operation set O={O; }{_;. Specifically, Theorem 1

proves for the training loss

Iy —u < (1= %) ly - w3

where A = 3= ). (K) Z?;&(ag’gf j;g(agfg)z. Moreover, since F(2) = 5= 37 (ui — yi)* =
- |lu—yl|3, increasing the weights gg , (L # h) of skip connects and the weights giht)z of convolutions
can reduce the loss Fi.i 0 (W7(B8), 3). Since the samples for training and validation are drawn from
the same distribution which means that E[Fy..;, ()] = E[F,,)(£2)] , increasing weights of skip
connections and convolution can reduce F\,(2) in expectation. Then by using first-order extension,

we can obtain
l 1 l
B [Fval(gi,il +e) - Fval(gg,ll)} =k |:Vg£€)tl Fval(gg,ztl)] :

O] =

Where gs,tl € gs,tl S g(l)

s.1, T€. Since as above analysis, increasing the weights g (1 # h) of skip con-

s,t1

nects will reduce the current loss Fval(gifil in expectation, which means that E ng Fval(ggfil)
s,tq

is positive. Since when the algorithm does not converge, we have 0 < C < E [Vga) Fval(gifil )} . In
s,tq
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this way, we have

E [Fval(gil,il + 6) - Fva](gglll)] > Ce.
Similarly, for convolution we can obtain

E |: VEll(gg ty T 6) Va](gglz‘g)} > Ce.

The proof is completed. ]

D.2 Proof of Theorem 3

Proof. For the results in the first part, it is easily to check according to the definitions. Now we
focus on proving the results in the second part. When g g ) < ——“_ then ggll = 0. Meanwhile, the

cumulative distribution of gili is ©(7(Ind —In(1 —8)) — ﬂglz) [ ]. In this way, we can easily compute
a
(lel # 0) - P <gsl) < —m>
a 1
:1_6(T(ln(_m)_ln(l+bf)> ﬁ())
—a

The proof is completed. O

D.3 Proof of Theorem 4

Proof. Here we first prove the convergence rate of the shallow network with two branches. The proof
is very similar to Theorem C.1. By using the totally same method, we can follow Lemma 21 to prove

Iy = < (1 22 CON) - v,

Here G(0) denotes the Gram matrix of the shallow network and have the same definition as the Gram
matrix of deep network with one branch. Please refer to the definition of Gram matrix in Appendix B.

The second step is to prove the smallest least eigenvalue of G(0) is lower bounded. For this step, the
analysis method is also the same as the method to lower bounding smallest least eigenvalue of G(0)
in DARTS. Specifically, by following Lemma 24, we can obtain

s—1

Auin (G(0)) > 27 > (aly?)? (H (cs3) >+Z als) (H Ef%f) Amin ().
t=0

s=1 t=0
where ¢, is a constant that only depends on o and the input data, Amin (K') > 0 is given in Theorem 1.
From Theorem 1, we know that for deep cell with one branch, the loss satisfies

< (1-2) 1y - w2

Co h s
where \ = 3¢ )\min(K)Zs o (af )) t= o(agz)) .

Since all weights a belong to the range [0, 1], by comparison, the convergence rate A\’ of shallow
cell with two branch is large than the convergence rate A of shallow cell with two branch:

h_y s—1 s—1
e e (i)« S ([ i)

s=1 t=0
h—1

3Co- - s
>\ = Amin K) § (h))2 | |(a§,2))2
t=0

This completes the proof. O
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E Proofs of Auxiliary Lemmas

E.1 Proof of Lemma 8

Proof. We use chain rule to obtain the following gradients:

% =u-y)Wi + Zh: a;is) g);(,)) (1=0,---,h—2)
o B ) o
= g 50 <t <c~ s o ) cas
| | 1<i<h1<s<Il-1);
av?/g(o) a)a(lio) g‘f/(((()))) TO(X) (0/ (W(O)CD(X)) O] agg(o))T € R™*P,
a?,és = (u—y X eR™,
where © denotes the dot product. O
E.2 Proof of Lemma 9
Proof. We use chain rule to obtain the following gradients:
% = Wy_1 € R™*P;
af((l =W+ Zh: a?&) g))?(l; (=0,---,h—2)
- g;ﬂ ( .2 E)Xu(s) + a’(gﬂl ((VVZ(S))T (U/ (M(S)q)(X(l))) © c‘)f(u(s))>) R

(0<I<h—1,0<s<l-1),
Bu 8U 8X(1) (0)\T / (0) 8” mxp
e :T\y((W ) (a (WOe(x)) o 8X<0>>) ER™"P,
du ou ax®
ow® ~ 0XD gw®

ou
o0xX®

-
21)3 (I)(X(é)) (0/ (Ws(l)@(X(S))) ® ) c R™XP

(0<I<h-1,1<s<l-1);

ou  ou 90X
WO — 9X©) oW ©

/ ou N\ om
= T(ID(X) <O’ (W(())q)(X)) @ m) (S ]R Xp,

where © denotes the dot product. O

E.3 Proof of Lemma 10

Proof. We each layer in turn. Our proof follows the proof framework in [4]. Note for notation
simplicity, we have assumed that the input X is of size m x p in Sec. B. To begin with, we look at the
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first layer. For brevity, let H = ®(X). According to the definition, we have

E[IX© 03] =7E [loW© ©@(X)|I}] = ZZE[ (W () H,))]

=1 j=1
© 2 @ 2
=3 Euenon [02(1Hyllrw)] > Bunno) [0 (1 Hjr |l rw))]

>Ey,pr0. 1 [07 ()] :=¢>0,

)

where @ holds since 7 = 1/,/m and the entries in W (0) obeys i.i.d. Gaussian distribution which
gives Y 7 ) Qi ~ N(0,3°7_, a7) with wi N(0,1); @ holds since || X | = 1 which means there
must exist one ;' such that | H.;/ || 7 > ﬁ

Next, we can bound the variance
Var [1x ) (0) 7]

=r*Var [|lo (W (0)(X))}] = 7*Var

I [02<Wi€°)<o>H:j>]}

i=1 j=1

e[S [ v )] | £ e | (S e i1t |

where @ holds since 7 = 1/,/m and the entries in W(®)(0) obeys i.i.d. Gaussian distribution, @
holds since Var(z) < E[z?] — [E(z)]?, ® holds since ||H ;|| < 1 and ¢; = o*(0) 4 4|0®(0)|u~/2/7 +
8|0 (0)|131/2/7 + 32uu*. Then by using Chebyshev’s inequality in Lemma 1, we have

AVar(| X 0)|F) _

B (11X )% - BIIX )3 > £) <

C1.
m02

4c1np

By setting m > , we have with probability at least 1 — 2,

1X(0)[1% >

N o

Meanwhile, we can upper bound || X (0)||% as follows:

@ @
IXQ0)1F < 72 loW @ 0)@(X)|17 < 722 IWO0)B(X)||7 < 1 choll®(X)|F < ke’ o,

where @ holds since |[W<" (0)||2 < \/mcuwo, and @ uses ||®(X)||% < ke|| X ||%.
Next we consider the cases where [ > 1. According to the definition, we can obtain

”X(l)

( 0, X (0) + ayro (W (0)0(X ) (0))))

s=0 F

l
<

> (a1 XD )1 + alrlo (WO @)8(X 0)])

@
< (ai” (z) ﬁucwo) ZHX(" e

C2 Vkeptcuwo,

C2 —

where @ uses the fact that ||c(W(0)@(X®0)|r < plWP0)RX(0))r <

Vo |®(X O (0) |l < vmpy/kecwo | X ) (0)]|7, @ holds by setting ¢ = a'') + al'yvkeucwo.

)
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Similarly, we can obtain

1X©©)F =
F
>

-1
> (alhx @) + allro W 02X 0))
s=0
> min [alL X)) - alsrlo (WP 002X (0)]r|
0<s<l—1 ’

all) - ol Vi, ucwo1|\x 0)|1r

> ‘a(l) <l) 3V /-LCwO‘ \% chCwO > 0.

Therefore, we can obtain that there exists a constant ¢, such that foralll € [0,1,--- ,h — 1],

— < |XD ) < coo-
Cz0

The proof is completed. O

E.4 Proof of Lemma 11

Proof. For this proof, we will respectively bound each layer. We first consider the first layer, namely
=1

Step 1. Case where | = 0: upper bound of | X (V) (k) — X (0)||r. According to the definition, we
have X (k) = 70(W© (k)®(X)) which yields

1X (k) = XO )| =rllo (W (k) 2(X)) ~ o(W (k) 2(X))]|r
Sru| WO (k)3(X) - W (0)3(X)||r
SV WO (k) = WO 0)

®

<uvker,
where @ uses the p-Lipschitz of o(-), @ uses || ®(X)|| < vVk||X]|| < vke, @ uses the assumption
W@ (k) = WO (0)||2 < /mr.
Step 2. Case where [ > 1: upper bound of | X" (k) — XV (0)||#. According to the definition, we
have

19 (k) = XV (0)]

5 [l (XD (k) = X)) + allhr (WO (R)2(X 2 (k) — o (W 0)2(X ) (0))))]

F

|
=l

o [x 9 0) = X0 +alir oW (R@x D w) - oW O@x D )] ]

~
= o

<3 ol [x9 ) - X9 )|+l || W Rex D w) - WO ex W 0)| |

s=!

o

Then we first bound the second term as follows:
(W Ry (x @ (k) - W )X (0)||
< | W wex @ ) - Wﬁ”(k><1><x<s>(o D]+ [Wmex @) - woex @ o)
<IWO W) e w) - x| +||W ) - W) Iex® o)
<VRIWS ®)) || XD 0 - X0
VR (1 + cu0) [ X ) = XD O+ Vemesor,

where in @ we use |[WK)|r < W%k — W0)|r + [WP0)r < Vmlr + cuwo),
HWS(l)(k) - WS(”(O)H < /m7, and the results in Lemma 10 that = < | X (0)||r < cz0. Plugging
» "

Fe WOty - w0)|| 1X )1
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this result into the above inequality gives

1O (k) = X (0)]F
<3 [al |xO0) - x| +alimu W mex© ) - woex o) ]
gij |
39

O+ alluvie (r 4 cun)) | X ) = XOO)| -+ alhnvreear]

C
(o) + @V + e00) [ X0 - XO0), + o]
(

— (23)
-1
<3 (e + s/ (r + cao)) HX%) - XV 0)|| +aluveeaor]
s=0
S( + ay + azpvke (1 + cwo) ) 1X“ Y (k) = X 0))1F
l
(1+a2 + o pvke ( r—i—cwo)) 1X© (k) XO)(O)H
l
(1+a2+a3mr T 4 Cwo ) N ker,
where a; = max; az(gl)2 and a3 = max; ailé
By using Eqn. (23), we have
0 ) 0 ) 1 !
(WO Re(x () - WO e (xP )| < = (1+ s + asuvhe (r +cuo) ) Veemr,
3
The proof is completed. O
E.5 Proof of Lemma 12
Proof. According to definition, we have
1 ®
- Z (’)X(h) Z [ (wa (2) — Wh(t)||p S Tm lw(t) =yl WD) p < cycu,  (24)

wlhere @ holds since 7, |ui — il < vnllu —yll2 = vny/>2,(wi — yi)?, @ holds by assuming
7= lu(t) —yllp = ¢y and [Wi(t)[|p < cu.

Then for 0 <1 < h, we have

n

1 ol
EZ W ZHW ) — yi) Wi(t)
s s s T ’ s 84
+s;1 (ag“’)aX“)( t) Foiar <(Wl( © (U (W wexim) e axf”(t))))

F

an — WD)
> 13 e

sl+1 i=1

+ gy <(W“>< )" (a/ (vm“)(t)@(xf”(t)))@aé)t»

aX“ (t)
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The main task is to bound

oX{(t) X (1)
s ol s s s or
<o) o +afyr va((W()(t)f (o (W mexPw)) o 8X;S)(t)>>
1 F g F
s ol ol
<ol || —7—|| +eaddravkI W Ollr |

o

< (0‘1(32) +af pvke(cwo + 7")) axX(0)
i F

)

where @ holds since || ¥(X)| r < vk|| X ||+ and the activation function o(-) is u-Lipschitz, @ holds

since |[W, (8)||r < [W, (£) = W2 (0) || ¢ + W, (0)||r < /mi(cwo + 7). Similar to (24), we can
prove

*ZH ui(t) — ()||F<TH u(t) = yllp Wil < cycu,

Combining the above results yields

- ()
- <cycu + « + a Hr(Cwo + 7'
9l P e ;H( 2+l BN e
@ 1 < ol
<cyeu + Z (Olz + aspvke(cuwo + r)) D lseos
s=Il+1 =1 6Xz (t) F

1 ot

<(1 c\ Cw - —_—

< ( + @y + agpvke(cuwo +r)) - ; HaXi(l—l)(t) i
IR ot

< (1 + oy + agu\/k:(cwo + T)) — A )
n =1 aX’L (t) F
!

< (1 + o + a3/i\/E(Cw0 + T)) CyCu,

where @ uses ay = maxs ai and oz = max,; a 5. The proof is completed. O

E.6 Proof of Lemma 13

Proof. Here we use mathematical induction to prove these results in turn. We first consider ¢ = 0.
The following results hold:

W (1) = W) r < VmF,  [Wa(t) = We(0)l|r < v/ (25)

Now we assume (25) holds for ¢t = 1,--- | k. We only need to prove it hold for ¢ + 1. According to the
definitions, we can establish

WOt +1) - W) || =nalyr

. > a(x ) (o/ (W mex @) @ ‘%()>

ox®t
v F
ot '
O (9) / (1) (s)
<nag Z (X, <0' (Ws t)(X; (t))) © M)
v F
Snalir VI S IX 0l o (WO e @) o — 5
n ° ' aXi(l)(t) F
<2na(l) T\/Eczol En: o' (Wé‘(l)(t)q)(X(S)(t))) ® l
n 2~ Z 0X" (1) |
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where @ holds since ||®(X ))||r < vke||X®||r; @ holds since in Lemma 11 and Lemma 10, we
have

IXOw)) <X @) - XD+ 1X0)]
l
<czo + (1 + oy + aspvke (r+ CwO)) N ker (26)

@
S2CZO7
where a, = max, aff,)z and a3 = max, agg, and czo > 1 is given in Lemma 10. The inequality

holds by setting r small enough, namely r < min( etz Lf/z? PN cwo)- This condition will
(o2 Qg b cCw0 ) K c

be satisfied by setting enough large m and will be dlscussed later.

Since the activation function o (-) is u-Lipschitz, we have

ol < ol
X0 ||, =" ax®() |,

o (WO mexw) e

So the remaining task is to upper bound H

Bx?iﬁ(t) o Towards this goal, we have - [|u(t) - yl|» <
ey = 2= (1= ly —u(0) |2, [Wr(®)ll p < [[Wi(t) = Wa(0)]| o+ [[Wa(0)[| p < cu = vm(F+cuwo),

W, (t) = W (0)|| » < /mr, and |[W,*(0)[|r < cwo. In this way, we can use Lemma Lemma 12

and obtain
~ c1(7 + cw A t/2
< ercyen = L) (1) Ty ),

>3
n i=1 \/ﬁ 2
Q)

where ¢; = (1 + as + azTuVk (T + cwo))l with ap = max, ags and a3 = maxs aglé

ol
ox{" ()

F

By combining the above results, we can directly obtain

201na uxﬁczo(r-ﬁ-cwo)
WO+ 1) - WO < = Ju®) ~ yll,
2C17]a Mfcwo( +Cw0) A t/2
< = (1-%) "ty - wOl-

Therefore, we have
WOt +1) = W(0)|r SIIW“)(t +1) = W) e+ W) - WP (0)||
861a ufczo(r + cuwo)

@
ly = w(0)]|l2 < Vmr,

W
. - 16(1 2 kcew LoDy, kcczocw :
where @ holds by setting 7 = (to “3“iji2 ogtVReCR0CU0 0 10| < cwo. By using the

same way, we can prove

2c1mpVkeczo (T + cuw A2
WO+ 1) = WO @) < 2 RCATEC) (1 IR Py o)

WOt +1) = W) |lr < V.

Then similarly, we can obtain

Wt +1) = Wi(t)||r =

Z yz X(S)

<"7 § |u1 yz
D 2nCg0 217010 nA
< t) — < 1- 12 — u(0)]|2,
<2 () -y < 220 (12 "y - w Ol

where @ holds since 7, |u; — :| < valu — yl|2, and HXfS)(t)H < 2¢40 in (E.7). Then we
F
establish

[xwl,

[Ws(t+1) = Wi (0)||r <[[Ws(t+1) = Wi(t)||F + [[Ws(t) — Wi(0)||Ir
<Bezolly —u(0)])2 2\/%7
—_ A,\/ﬁ — 9
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where @ holds by setting 7 = M Finally, combining the value of 7, we have 7 =

mn
o o3 cCw la(l) cCx0Cw . .
max (Scwoﬁf/;%f‘””?, 16(1 ey +2 3“\/?}%2 sstvRecroe °||y—u(0)||2) < ¢ywo. Under this setting,
we have
4cna( )uc ocwoVk
(1 U s,3HCx0tu
WO+ 1) = Wi 0l <= PRV ) —
4c a C20CwoV ke A
Heraihpemenyle (N,
vn 2
4cn,uc 0Cw0
WO b4 1) WO () < 2ECu0VEe oy y||F
denpcgocwoVke nA
< 2ONMHCz0CwoV e (1 1A — u(0
< HeCet 0y ) 1y~ o)l
where ¢ = (1+ o + 2a3m/kccwo)l with ay; = max, ag 5 and ag = maxsla . The proof is

completed. O

E.7 Proof of Lemma 14

Proof. We use mathematical induction to prove the results. We first consider ~ = 0. According to the
definition, we have

[ @0+ 1) - x| = [+ D20) - oW O w2

F F

<ru WOk +1) - wO )| e

)

<ruvke HW(O)(k +1) - W<°>(k)HF

34c7’7m20wocwokc

S
where @ uses ||®(X)||r < Vk|| X||r < Vk. where the sample X obeys || X || = 1; @ uses the result

in Lemma 13 that W (¢ + 1) — WO (1) < denmesnenavEe ||y (1) — | .

[w(k) =yl g

Then we first consider A > 1.
| X0k + 1) - xOw)|
F

-1

> (alhX Ok +1) =X ®) +allr (oW (et DOX D (k1)) ~ o (WD ()X (K))) )

0

S

F
—

>_-

[ O [x 0w+ n-xO )| +alir oW 1o x @ k1) -0 (W R)e(x (k)| ]

S |:as 2

s=0

A )=XO W) +alhru Wk +0eX O (6 1) - W (DX O w)]| ]

Then we bound the second term carefully:
HWS(”(k F1OXD (k+1)) — WO (k)X (k) H

:Hwﬁkm1)<<I><X<S)<k+1>>7q><x<s>(k> )|, +H WO+ 1) = WO ()X (k)

‘ F

O+ =W, xw],

O], o - x]

By using Lemma 11 and Lemma 10, we have
1 (k)| <1 X (k) = X2 ©O)[# + X (0)]|

1 @
<czo + (1 + oy + azuV ke (77+ Cwo)) J1AY; k. < 2¢c40,
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where a; = max, ai{)z and a3 = maxs ag%, and c,0 > 11s given in Lemma 10. @ holds since in

Lemma 13, we set m large enough such that 7 is enough small.

Besides, Lemma E.7 shows that
4c77a SHCz0CwoV ke

Wk +1) - WO E)|F < -
W (k+1) s (Rl e N lu(k) =yl
where ¢ = (1+a, + 203#\/5%0) with a; = max, a() and a3 = max;, a, 5. Combing all
results yields
WOtk + DXk + 1) - WO WX k)|
) () 801704( )ucTocwok
<2vEemea [ X0 1) = XO@)|| |+ =222 k) —

Thus, we can further obtain
| Xk + 1) - xOw)|
F

-1 (z)
s s 87077 p2c2gcuwoke
<3 | (@) + 2VEewoalhn) | X0 (-4 1) - x|+ T Berocuoke gy
g F vn
o =t 8 2,2 2 k
< [(oz2 + 2V kecwoo) | X Ok + 1) - X)) 4 TSI Cocuoke —yHF}

F vn

S

87—6"7(‘13)2/4263:067110’%
<(1 NI HX(O) (k X (k H k) —
< (14 an + 2VEeuoaan) ([ X0+ 1) = X0+ St gy,
U dernu? cxocwok 8ren(o ) pu?c2ocwoke
< —
< (1+ @z + 2Vcewaun) + Tt ) ) -y
l 2(043)2010 407'17,112czocw0kC
< — .
< (1+ e+ 2vRiwasn) (1+ (ay + 2V Eeconcii) Vi v A L
The proof is completed. O

E.8 Proof of Lemma 15

Proof. In Lemma 13, we have show

max (|WO () = W), WO ) = WO ©O)]p, | We(t) = We(0)]| ) < Vi < vimewo.
27
Note = \/—% In this way, from Lemma 13, we have

ol < [0 WO+l <2
], < - wo, W], <2

IWa(@®)lp < [Wa(t) = Wa(0)llp + [Wa(0)] 5 < 2v/mewo

In Lemma 10, we show that when Eqn. (27) holds which is proven in Lemma 13, then || X" (0 » <
¢z0. Under Eqn. (10), Lemma 11 shows

1XO (k) = XO©)1r < (1+ 0 + 2000y Fecun) 1VEF < ero,
where @ holds since in Lemma 13, we set m = O (M 1+ a+ 2a3,u\/Ecwo)4h) such
that
T :W max (17 2 (1 + ay + 2043#\/Ecwo)l aig;m/acwo)
< Cz0

(T4 a,+ 2a3u\/l7ccwo)l iEe

Therefore, we have

x|, < 1xPw) - X Ol + [ X)), < 2000
The proof is completed. O
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E.9 Proof of Lemma 16

Proof. We first consider I = 0. Specifically, we have

1X (k) = X O) 1 =7 oW O R)2(X.) - oW )(X)|

<o [WO k) - W) 19X ¢
Lo w0 w0,
SR,

where @ holds since || ®(X,)||lr < Vko|Xillr < Vk. and the results in Lemma 13 that
Hw<0>(1f) - W(0>(0)H < JmF.
F

Then we consider [ > 1. According to the definition, we have

1X8 (k) — X8 0)|F

-1
=3 (al2xP k) = X (0) + alsr (cW () @(X (k) — (WL (0)2(X(0))) )
<3 [ol [xOw) - X0+ ol |2 WO mex O m)) - WO @axO0) ]
s=0

<3 ol [ XDk - XD+ albru | |wO mex® w) - w©oex o)) .

Then we bound
W e x? (k) - W @ex(0)|

<| WO w - wP e k)| + | W O @x k) - e(x 0)))

’
<|wOw -wlo) _|lexOw)| +||wlo)] |ecxw) -ex o))

[©)
<2VFemeaoF + 2V Eemcuo HXZ.(S)(k) — X(0) H :
F

where @ holds since Lemma 13 shows HW“”(/c) - W“”(O)HF < /m7 and Lemma 15 shows
HX}S%)HF < 2640 and H!W”(O)HF < 2\/MCuwo.
In this way, we have

1X" (k) — X0 0)|F

-1
<> (@ +20nvheen ) | X k) = X2 0)|| + 20l pvEecsor]
s=0 F

2:2_;1) [(az + 2a3N\/ECw0> HXw(g)(k) - XZ'(S)(O)HF + 2043/1\/5%077}

®
<c [HXfm(k) — XZ.(S)(O)HF + 2a3,u\/Eczo'F]
=c(1+ 2a3czo)u\/k>c77
where @ and @ hold by using ¢ = (1 + oy + 2a3u\/Ecwo)l with a; = max; agl)z and a; =
maxs a(f)g) The proof is completed. |

E.10 Proof of Lemma 17

Proof. For this proof, we need to use the results in other lemmas. Specifically, Lemma 13

W) = W )r < Vimr, W () = W (0)|r < VmF, [Wa(t) = Wa(0)]lr < VT,
(28)
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where ¢ = (1 + g + 2a3u\/kccwo)l with a; = maxs; ocgl)z and a3 = max aglg Based on this,
Lemma 15 further shows

(wOw)|| < 2vimen, [WOW| | <2vmes, Wby < 2vmewn, [XO®)] <260

(29)
Next, Lemma 16 also proves
1% (k) = XP(0) | < e(1 + 2asca0) pv/Re
Then we can easily obtain our result:
h
Jui (k) =i (0)] = | > (Wa(k), X" (k) — (W2 (0), X" (0))
s=1
h
<D (W) = Wa(0), XV (k) + (W (0), X P (k) = X[V (0))
s=1
< Z 2¢/m7ca0 + 2v/mewoc(l + 2esca0) v ke
s=1
:2\/7;}1' (CmO + CwOC(l + 20‘36:00)/-/4\/5) .
Then we look at the second part. We first look at I = h:
ol ol
— :uik—iWk—uiO_iWO
HGXZ.“)(IC) x| =100~ 5WAE) = ((0) =y WOl
=[ui(k) = yil Wi (k)| + [ui(0) — wil [Wi(0)l
<N (wi(k) = wi(0))Wi(k)|| p + [[(wi(0) — yi) (Wi(k) — Wi(0))|
<lui(k) = wi (O [Wi(k)l| p + [ui(0) — yal [(Wi(k) — Wi(0))l
<4y/m7i (CwO\/ah (CwO + cwoc(l + QQSCwO)N\/ch) + |ui(0) — yil) .
(30)
Then we consider [ < h. According to the definitions in Lemma 8, we have
ot (s) (NT [ 7 (s) ©) ot
ax@ = - YW+ Z ( l2aX<s +alyr \IJ((VVl )" (o (Wex ™) o 52 ) ) )

s=Il+1
In this way, we can upper bound

oo
axP(k)  ax"(0)

F

= [[(us (k) —y:) Wi (k) = (ui(0) =y ) Wi(0) || . + Za
s=l+1

+ Z a(s)r\/ED,

s=Il+1

ax“(k) ax“
where D = ||A[(Bx®Ck)— AJ(Bo®Co)|, in which A, = I/Vl(s)(k),Bk =

o (VVl(S) (kK)d(x® (k:))) ,C = . Similar to Eqn. (30), we have

a¢
ax ) (k)
| (wi(k) — yi)Wi(k) — (ui(0) — y:)Wi(0)||
< 4vmr (CwO\/mh (CIO + cwoc(1 + QQBCIO)N\/FC> + [ui(0) — yil) :
Then, we can bound D as follows:
D= H(Ak - AO)T(B() O] CO)HF + HA}I(B}C ©Cr—By© CO)HF
<||Ax — Aol|r||Bo © Collr + ||Ak||r||Br ® Crx — Bo @ Co||r

)
<py/m7]|Coll2 + 2v/mcwo|| B © Cx — Bo © Co||r
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where @ uses the results in Eqns. (29) and (28). The remaining work is to bound
|Br ® Cx — Bo ® Col|r =||Br © (Cr — Co)||r + ||(Bx — Bo) ® Co||r

<ulC = Collr + || W ()0 (X () = W 02X (0)| €0l
where @ uses the assumption that the activation function o(-) is u-Lipschitz and p-smooth. Note

||Col|~ is a constant, since it is the gradient norm at the initialization which does not involves the
algorithm updating. Recall Lemma 11 shows

HWS(Z)(k)Q(X(S)(k)) - Ws‘”(o)@(X‘S)(O))H (1 + oy + azpvke (r + cwo))l Vkemr,

< —
F Q3

where a; = max; ai{)g and a3 = maxs ai{é, and c,o > 11is given in Lemma 10. Then we upper

bound
s s 1 l -
[WOmex O m) - w0 < o (14 @z + awnvE @+ evo)) Ve
Therefore, we have

_ Chllo l .
D </ Coll»+ 2w (uHCrconﬁM (1+ otV (rteuo) kcmr)
3

By combining the above results, we have

or ol

ax (k) ax"(0)

F

h
<ot Y {(afﬁj + 20{ Vo)

s=I+1

o ol

aXP (k) X (k) |,

+ c2

ot ol

OXI (k) 09X (k)

h
<ci + Z

s=Il+1

l
< (1 + sz + 2043\/E/Lcwo) [

(az + 2a3V keucwo) +c3

F

o o
ox™ k) ax™(0)
where ¢ = 4y/m7 (cwov/mh (cz0 + cwoc(l 4 2acz0)pvke) + [ui(0) — wil),  c2 =
agf; (,u'FHCon + QCMO% (14 o + aspvke (r + Cwo))l V kcmF) and c3 =

as (M?ncon2 1 2cu0 2000 (14 avy + g/ (1 + cun))’ Wcm?). Consider [|Coll» = O (v/m),
for brevity, we ignore constants and obtain

+c3
F

ot ov

H ax(k) ax(0)

2 ~
< crecasCyoCzopkemt,

F

where ¢ = (1 + a2 + 23/ kcpcwo)l and ¢; is a constant. The proof is completed. O

E.11 Proof of Lemma 18

Proof. By Assumption 2, each entry for the initial parameter w (0) obeys Gaussian distribution

N(0,1). Then |[W{”(0)||% is chi-square variable with freedom degree k.pm. In this way, by using
Lemma 4, we have

P (IWD )1} — kepm > 2¢/Fopmt +2t) < exp(—).

Therefore, with probability at least 1 — we can obtain

__ 5
2h(h+3)°

W 0)r < \/ kepm + 2+/kepmlog(2h(h + 3)/8) + 2log(2h(h + 3)/6) < v/mcwo,

where c,0 ~ kep 18 a constant. Note here we focus on m more than p and k., since m is much larger
than p and k. which is introduced in subsequent analysis.
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By using the same method, we can prove that with probability at least 1 — m,

IWo(0)|r < Vimewo and  [Wa(0)]r < vmcwo
h(h+3)
In this way, with probability at least (1 — m) R o SH) h(h2+3) = 1—§/4, these results

hold at the same time. The proof is completed. O
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