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Abstract

Despite its high search efficiency, differential architecture search (DARTS) often
selects network architectures with dominated skip connections which lead to per-
formance degradation. However, theoretical understandings on this issue remain
absent, hindering the development of more advanced methods in a principled way.
In this work, we solve this problem by theoretically analyzing the effects of various
types of operations, e.g. convolution, skip connection and zero operation, to the
network optimization. We prove that the architectures with more skip connections
can converge faster than the other candidates, and thus are selected by DARTS.
This result, for the first time, theoretically and explicitly reveals the impact of skip
connections to fast network optimization and its competitive advantage over other
types of operations in DARTS. Then we propose a theory-inspired path-regularized
DARTS that consists of two key modules: (i) a differential group-structured sparse
binary gate introduced for each operation to avoid unfair competition among opera-
tions, and (ii) a path-depth-wise regularization used to incite search exploration
for deep architectures that often converge slower than shallow ones as shown in
our theory and are not well explored during search. Experimental results on image
classification tasks validate its advantages.

1 Introduction

Network architecture search (NAS) [1] is an effective approach for automating network architecture
design, with many successful applications witnessed to image recognition [2–6] and language
modeling [1, 6]. The methodology of NAS is to automatically search for a directed graph and its edges
from a huge search space. Unlike expert-designed architectures which require substantial efforts from
experts by trial and error, the automatic principle in NAS greatly alleviates these design efforts and
possible design bias brought by experts which could prohibit achieving better performance. Thanks
to these advantages, NAS has been widely devised via reinforcement learning (RL) and evolutionary
algorithm (EA), and achieved promising results in many applications, e.g. classification [2, 4].

DARTS [6] is a recently developed leading approach. Different from RL and EA based methods [1–4]
that discretely optimize architecture parameters, DARTS converts the operation selection for each
edge in the directed graph into continuously weighting a fixed set of operations. In this way, it can
optimize the architecture parameters via gradient descent and greatly reduces the high search cost in
RL and EA approaches. However, as observed in the literatures [7–10] and Fig. 1 (a), this differential
NAS family, including DARTS and its variants [11, 12], typically selects many skip connections
which dominate over other types of operations in the network graph. Consequently, the searched
networks are observed to have unsatisfactory performance. To alleviate this issue, some empirical
techniques are developed, e.g. operation-level dropout [7], fair operation-competing loss [8]. But no
attention has been paid to developing theoretical understandings for why skip connections dominate
other types of operations in DARTS. The theoretical answer to this question is important not only for
better understanding DARTS, but also for inspiring new insights for DARTS algorithm improvement.
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Figure 1: Illustration of selected normal cells by DARTS and PR-DARTS. By comparison, the
group-structured sparse gates in PR-DARTS (b) well alleviate unfair operation competition and
overcome the dominated-skip-connection issue in DARTS (a); path-depth-wise regularization in
PR-DARTS (c) helps rectify cell-selection-bias to shallow cells; PR-DARTS (d) combines these two
complementary components and well alleviates the above two issues, testified by the results in (e).

Contributions. In this work, we address the above fundamental question and contribute to derive
some new results, insights and alternatives for DARTS. Particularly, we provide rigorous theoretical
analysis for the dominated skip connections in DARTS. Inspired by our theory, we then propose
a new alternative of DARTS which can search networks without dominated skip connections and
achieves state-of-the-art classification performance. Our main contributions are highlighted below.

Our first contribution is proving that DARTS prefers to skip connection more than other types of
operations, e.g. convolution and zero operation, in the search phase, and tends to search favor skip-
connection-dominated networks as shown in Fig. 1 (a). Formally, in the search phase, DARTS first
fixes architecture parameter β which determines the operation weights in the graph to optimize the
network parameterW by minimizing training loss Ftrain(W,β) via gradient descent, and then uses
the validation loss Fval(W,β) to optimize β via gradient descent. We prove that when optimizing
Ftrain(W,β), the convergence rate at each iteration depends on the weights of skip connections much
heavier than other types of operations, e.g. convolution, meaning that the more skip connections
the faster convergence. Since training and validation data come from the same distribution which
means E[Ftrain(W,β)]=E[Fval(W,β)], more skip connections can also faster decay Fval(W,β) in
expectation. So when updating architecture parameter β, DARTS will tune the weights of skip
connections larger to faster decay validation loss, and meanwhile, will tune the weights of other
operations smaller since all types of operations on one edge share a softmax distribution. Accordingly,
skip connections gradually dominate the network graph. To our best knowledge, this is the first
theoretical result that explicitly shows heavier dependence of the convergence rate of NAS algorithm
on skip connections, explaining the dominated skip connections in DARTS due to their optimization
advantages.

Inspired by our theory, we further develop the path-regularized DARTS (PR-DARTS) as a novel
alternative to alleviate unfair competition between skip connection and other types of operations
in DARTS. To this end, we define a group-structured sparse binary gate implemented by Bernoulli
distribution for each operation. These gates independently determine whether their corresponding
operations are used in the graph. Then we divide all operations in the graph into skip connection
group and non-skip connection group, and independently regularize the gates in these two groups to
be sparse via a hard threshold function. This group-structured sparsity penalizes the skip connection
group heavier than another group to rectify the competitive advantage of skip connections over other
operations as shown in Fig. 1 (b), and globally and gradually prunes unnecessary connections in the
search phase to reduce the pruning information loss after searching. More importantly, we introduce
a path-depth-wise regularization which encourages large activation probability of gates along the
long paths in the network graph and thus incites more search exploration to deep graphs illustrated by
Fig. 1 (c). As our theory shows that gradient descent can faster optimize shallow and wide networks
than deep and thin ones, this path-depth-wise regularization can rectify the competitive advantage of
shallow network over deep one. So PR-DARTS can search performance-oriented networks instead of
fast-convergence-oriented networks and achieves better performance testified by Fig. 1 (e).

2 Related Work

DARTS [6] has gained much attention recently thanks to its high search efficiency [7–18]. It relaxes a
discrete search space to a continuous one via continuously weighting the operations, and then employs
gradient descent algorithm to select promising candidates. In this way, it significantly improves
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the search efficiency over RL and EA based NAS approaches [1–4]. But the selected networks
by DARTS have dominated skip connections which lead to unsatisfactory performance [7–10]. To
solve this issue, Chen et al. [7] introduced operation-level dropout [19] to regularize skip connection.
Chu et al. [8] used independent sigmoid function for weighting each operation to avoid operation
competition, and designed a new loss to independently push the operation weights to zero or one. In
contrast, our PR-DARTS uses binary gate for each operation and then imposes group-structured and
path-depth-wise regularizations to alleviate the fast-convergence-oriented search issue in DARTS.

The intrinsic theoretical reasons for the dominated skip connection in DARTS are rarely investigated
though heavily desired. Zela et al. [9] empirically analyzed the poor generalization performance of the
selected architectures by DARTS from the argument of sharp and flat minima. Shu et al. [20] studied
general NAS and showed that NAS prefers to shallow and wide networks since these networks have
more smooth landscape empirically and smaller gradient variance which both boost training speed.
But they did not reveal any relation between skip connections and convergence behaviors. Differently,
we explicitly show the role of weights of different operations in determining the convergence rate in
network optimization, revealing the intrinsic reasons for the dominated skip connections in DARTS.

3 Theoretical Analysis for DARTS

In this section, we first recall the formulation of DARTS, and then theoretically analyze the intrinsic
reasons for the dominated skip connections in DARTS by analyzing its convergence behaviors.

3.1 Formulation of DARTS

DARTS [6] searches cells which are used to stack the full network architecture. A cell is organized
as a directed acyclic graph with h nodes {X(l)}h−1

l=0 . Typically, the graph contains two input nodes
X(0) and X(1) respectively defined as the outputs of two previous cells, and has one output node
X(h−1) giving by concatenating all intermediate nodesX(l). Each intermediate nodeX(l) connects
with all previous nodesX(s) (0≤s<l) via a continuous operation-weighting strategy, namely

X(l) =
∑

0≤s<l

∑r

t=1
α(l)
s,tOt

(
X(s)

)
with α(l)

s,t = exp(β(l)
s,t)/

∑r

t=1
exp(β(l)

s,t), (1)

where the operation Ot comes from the operation set O = {Ot}rt=1, including zero operation, skip
connection, convolution, etc. In this way, the architecture search problem becomes efficiently learning
continuous architecture parameter β = {β(l)

s,t}l,s,t via optimizing the following bi-level model

minβ Fval(W
∗(β),β), s.t.W ∗(β) = argminW Ftrain(W ,β), (2)

where Ftrain and Fval respectively denote the loss on the training and validation datasets, W is the
network parameters in the graph, e.g. convolution parameters. Then DARTS optimizes the architecture
parameter β and the network parameterW by alternating gradient descent. After learning β, DARTS
prunes the dense graph according to the weight α(l)

s,t in Eqn. (1) to obtain compact cells.

Despite its much higher search efficiency over RL and EA based methods, DARTS typically selects a
cell with dominated skip connections, leading to unsatisfactory performance [7–10]. But there is no
rigorously theoretical analysis that explicitly justifies why DARTS tends to favor skip connections.
The following section attempts to solve this issue by analyzing the convergence behaviors of DARTS.

3.2 Analysis Results for DARTS

For analysis, we detail the cell structures in DARTS. Let input be X ∈ Rm̄×p̄ where m̄ and p̄ are
respectively the channel number and dimension of input. Typically, one needs to resize the input to a
target size m× p via a convolution layer with parameterW (0) ∈ Rm×kcm̄ (kernel size kc × kc)

X(0) = conv(W (0),X) ∈ Rm×p with conv(W ;X) = τσ(WΦ(X)), (3)

and then feed it into the subsequent layers. The convolution operation conv performs convolution and
then nonlinear mapping via activation function σ. The scaling factor τ equals to 1√

m̄
when channel

number in conv is m̄. It is introduced to simplify the notations in our analysis and does not affect
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convergence behaviors of DARTS. For notation simplicity, we assume stride sc=1 and padding zero
pc= kc−1

2 to make the same sizes of output and input. Given a matrix Z∈Rm×p, Φ(Z) is defined as

Φ(Z)=


Z>1,−pc+1:pc+1 Z>1,−pc+2:pc+2 · · · Z>1,p−pc:p+pc
Z>2,−pc+1:pc+1 Z>2,−pc+2:pc+2 · · · Z>2,p−pc:p+pc

...
...

. . .
...

Z>m,−pc+1:pc+1 Z
>
m,−pc+2:pc+2 · · · Z>m,p−pc:p+pc

∈Rkcm×p,
where Zi,t = 0 (t ≤ 0 or t > p). Then the conventional convolution can be computed asWΦ(X)
where each row inW denotes a conventional kernel. Note, for other convolutions, e.g. depth-wise
separable convolution, our analysis framework still holds and can derive very similar results. Now
we are ready to define the subsequent layers in the cell:

X(l) =
∑l−1

s=0

(
α(l)
s,1zero(X)+α(l)

s,2skip(X)+α(l)
s,3conv(W (l)

s ;X(s))
)
∈Rm×p (l=1, · · ·, h− 1),

(4)
where zero operation zero(X) = 0 and skip connection skip(X) = X , α(l)

s,t is given in (1). In
this work, we consider three representative operations, i.e. zero, skip connection and convolution,
and ignore pooling operation since it reveals the same behaviors as convolution, namely both being
dominated by skip connections [7–9]. Next, we feed concatenation of all intermediate nodes into a
linear layer to obtain the prediction ui of the i-th sampleXi and then obtain a mean squared loss:

F (W ,β) =
1

2n

∑n

i=1
(ui − yi)2 with ui =

∑h−1

s=0
〈Ws,X

(s)
i 〉 ∈ R, (5)

where X(s)
i denotes the s-th feature node for sample Xi, {Ws}h−1

s=0 denote the parameters for the
linear layer. F (W ,β) becomes Ftrain(W ,β) (Fval(W ,β)) when samples come from training dataset
(validation dataset). Subsequently, we analyze the effects of various types of operations to the
convergence behaviors of Ftrain(W,β) when optimize the network parameterW via gradient descent:

W (l)
s (k+1)=W (l)

s (k)−η∇
W

(l)
s (k)

Ftrain(W,β) (∀l,s), Ws(k+1)=Ws(k)−η∇Ws(k)Ftrain(W,β) (∀s),
(6)

where η is the learning rate. We use gradient descent instead of stochastic gradient descent, since
gradient descent is expectation version of stochastic one and can reveal similar convergence behaviors.
For analysis, we first introduce mild assumptions widely used in stochastic optimization [21–24] and
network analysis [25–32].
Assumption 1. Assume the activation function σ is µ-Lipschitz and ρ-smooth. That is, for ∀x1, x2,
σ satisfies |σ(x1)−σ(x2)| ≤ µ|x1−x2| and |σ′(x1)−σ′(x2)| ≤ ρ|x1−x2|. Moreover, we assume
thatσ(0) can be upper bounded, and σ is analytic and is not a polynomial function.
Assumption 2. Assume the initialization of the convolution parameters (W (l)

s ) and the linear
mapping parameters (Ws) are drawn from Gaussian distribution N (0, I).
Assumption 3. Suppose the samples {Xi}ni=1 are normalized such that ‖Xi‖F = 1. Moreover, they
are not parallel, namely vec (Xi) /∈ span(vec (Xj)) for all i 6= j, where vec (Xi) vectorizesXi.
Assumption 1 is mild, since most differential activation functions, e.g. softplus and sigmoid, satisfy
it. The Gaussian assumption on initial parameters in Assumption 2 is used in practice. We assume
Gaussian variance to be one for notation simplicity in analysis, but our technique is applicable to
any constant variance. The normalization and non-parallel conditions in Assumption 3 are satisfied
in practice, as normalization is a data preprocess and samples in a dataset are often not restrictively
parallel. Based on assumptions, we summarize our result in Theorem 1 with proof in Appendix ??.

Theorem 1. Suppose Assumptions 1, 2 and 3 hold. Let c=
(
1+α2+2α3µ

√
kccw0

)h
, α2 =

maxs,lα
(l)
s,2 and α3 = maxs,lα

(l)
s,3. If m ≥ cmµ

2

λ2

[
ρp2n2 log(n/δ)+c2k2

cc
2
w0/n

]
and η ≤

cηλ√
mµ4h3k2cc

4 , where cw0, cm, cη are constants, λ is given below. Then when fixing architecture
parameterize α in (1) and optimizing network parameterW via gradient descent (6), with probabil-
ity at least 1− δ we have

Ftrain(W (k + 1),β) ≤ (1− ηλ/4)Ftrain(W (k),β) (∀k ≥ 1),

where λ = 3cσ
4 λmin(K)

∑h−2
s=0 (α(h−1)

s,3 )2
∏s−1
t=0 (α(s)

t,2 )2, the positive constant cσ only depends on σ
and input data, λmin(K) = mini,j λmin(Kij) is larger than zero in which λmin(Kij) is the smallest
eigenvalue ofKij =

[
X>i Xj ,X

>
i Xj ;X

>
j Xi,X

>
j Xj

]
.
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Theorem 1 shows that for an architecture-fixed over-parameterized network, when using gradient
descent to optimize the network parameter W , one can expect the convergence of the algorithm
which is consistent with prior deep learning optimization work [25–28]. More importantly, the
convergence rate at each iteration depends on the network architectures which is parameterized by α.

Specifically, for each factor λs = (α(h−1)
s,3 )2

∏s−1
t=0 (α(s)

t,2 )2 in the factor λ, it is induced by the
connection path X(0)→X(1)→· · ·→X(s)→X(h−1). By observing λs, one can find that (1) for
the connections before nodeX(s), it depends on the weights α(s)

t,2 of skip connections heavier than
convolution and zero operation, and (2) for the direct connection between X(s) andX(h−1), it relies
on convolution weight α(h)

s,3 heavier than the weights of other type operations. For observation (1), it
can be intuitively understood: as shown in [33–36], skip connection often provides larger gradient
flow than the parallel convolution and zero connection and thus greatly benefits faster convergence of
networks, since skip connection maintains primary information flow, while convolution only learns
the residual information and zero operation does not delivery any information. So convolution and
zero operations have negligible contribution to information flow and thus their weights do not occur
in
∏s−1
t=0 (α(s)

t,2 )2 of λs. For observation (2), as the path X(0)→X(1)→· · ·→X(s) is shared for all
subsequent layers, it prefers skip connection more to maintain information flow, while for the private
connection betweenX(s) andX(h−1) which is not shared sinceX(h−1) is the last node, it relies on
learnable convolution more heavily than non-parameterized operations, since learnable operations
have parameter to learn and can reduce the loss. For the theoretical reasons for observations (1) and
(2), the skip connection in the shared path can improve the singularity of network Gram matrix more
than other types of operations, where the singularity directly determines the convergence rate, while
the learnable convolution in private path can benefit the Gram matrix singularity much more. See
details in Appendix ??. The weight α(l)

s,3 of zero operation does not occur in λ, as it does not delivery
any information.

Now we analyze why the selected cell has dominated skip connections. The above analysis shows
that the convergence rate when optimizing Ftrain(W ,β) depends on the weights of skip connections
heavier than other weights in the shared connection path which dominates the connections of a cell.
So larger weights of skip connections often give faster loss decay of Ftrain(W ,β). Consider the
samples for training and validation come from the same distribution which means E[Ftrain(W,β)]=
E[Fval(W,β)], larger weights of skip connections can also faster reduce Fval(W ) in expectation,
which accords with the empirical observations in Fig. 2 and the observations in [9]. In Fig. 2, we
first set all operations in NAS cell (normal and reduction cells, see details in Sec. 5) as convolution

Figure 2: Effects of skip con-
nections to convergence rate
of network.

(3×3), and randomly select 0%, 37.5% and 62.5% operations as
skip connections. Next, we stack 8 NAS cells to build a network
and train on CIFAR10 with same settings. Fig. 2 shows that more
skip connections gives faster convergence. So when optimizing α
via optimizing β in Fval(W,β), DARTS will tune weights of most
skip connections larger to faster reduce Fval(W,β). As the weights
of three operations on one edge share a softmax distribution in (1),
increasing one operation weight means reducing other operation
weights. Thus, skip connections gradually dominate over other types
of operations for most connections in the cell. So when pruning
operations according to their weights, most of skip connections are
preserved while most of other operations are pruned. This explains
the dominated skip connections in the cell selected by DARTS.

4 Path-Regularized Differential Network Architecture Search

The proposed method consists of two main components, i.e. group-structured sparse stochastic gate
for each operation and path-depth-wise regularization on gates, which are introduced below in turn.

4.1 Group-structured Sparse Operation Gates

The analysis in Sec. 3.2 shows that skip connection has superior competing advantages over other
types of operations when they share one softmax distribution. To resolve this issue, we introduce
independent stochastic gate for each operation between two nodes to avoid the direct competition
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between skip connection and other operations. Specifically, we define a stochastic binary gate g(l)
s,t for

the t-th operation between nodesX(s) andX(l), where g(l)
s,t∼Bernoulli

(
exp(β(l)

s,t)/(1+exp(β(l)
s,t)
)
.

Then at each iteration, we sample gate g(l)
s,t from its Bernoulli distribution and compute each node as

X(l) =
∑

1≤i<l

∑r

t=1
g(l)
s,tOt

(
X(i)

)
. (7)

Since the discrete sampling of g(l)
s,t is not differentiable, we use Gumbel technique [37, 38] to

approximate g(l)
s,t as ḡ(l)

s,t = Θ
(
(ln δ − ln(1 − δ) + β(l)

s,t)/τ
)

where Θ denotes sigmoid function,
δ ∼ Uniform(0, 1). For temperature τ , when τ→ 0 the approximated distribution ḡ(l)

s,t recovers
Bernoulli distribution and is non-smooth, while when τ→ +∞, the approximated distribution
becomes very smooth. In this way, the gradient can be back-propagated through ḡ(l)

s,t to the network
parameterW .

If there is no regularization on the independent gates, then there are two issues. The first one is that
the selected cells would have large weights for most operations. This is because (1) as shown in
Theorem 1, increasing operation weights can lead to faster convergence rate; (2) increasing weights
of any operations can strictly reduce or maintain the loss which is formally stated in Theorem 2. Let
tskip and tconv respectively be the indexes of skip connection and convolution in the operation set O.

Theorem 2. Assume the weights in DARTS model (2) is replaced with the independent gates g(l)
s,t.

(1) Increasing the value of g(l)
s,t of the operations, including zero operation, skip connection, pooling,

and convolution with any kernel size, can reduce or maintain the loss Fval(W
∗(β),β) in (2).

(2) Suppose the assumptions in Theorem 1 hold. With probability at least 1−δ, increasing g(l)
s,tskip

(0≤
s< l < h − 1) of skip connection or g(h−1)

s,tconv (0≤s< h − 1) of convolution with increment ε can
reduce the loss Fval(W

∗(β),β) in (2) to Fval(W
∗(β),β)−Cε in expectation, where C is a positive

constant.

See its proof in Appendix ??. Theorem 2 shows that DARTS with independent gates would tune
the weights of most operations large to obtain faster convergence and smaller loss, leading to dense
cells and thus performance degradation when pruning these large weights. The second issue is
that independent gates cannot encourage benign competition and cooperation among operations,
as Theorem 2 shows most operations tend to increase their weights. Considering the performance
degradation caused by pruning dense cells, benign competition and cooperation among operations
are necessary for gradually pruning unnecessary operations to obtain relatively sparse selected cells.

To resolve these two issues, we impose group-structured sparsity regularization on the stochastic
gates. Following [39] we stretch ḡ(l)

s,t from the range [0, 1] to [a, b] via rescaling g̃(l)
s,t=a+(b− a)ḡ(l)

s,t,
where a<0 and b>1 are two constants. Then we feed g̃(l)

s,t into a hard threshold gate to obtain the
gate g(l)

s,t = min(1,max(0, g̃(l)
s,t)). In this way, the gate g(l)

s,t enjoys good properties, e.g. exact zero
values and computable activation probability (P(g(l)

s,t 6=0), which are formally stated in Theorem 3.

Theorem 3. For each stochastic gate g(l)
s,t, it satisfies g(l)

s,t = 0 when g̃(l)
s,t ∈ (0,− a

b−a ]; g(l)
s,t = g̃(l)

s,t

when g̃(l)
s,t ∈ (− a

b−a ,
1−a
b−a ]; g(l)

s,t = 1 when g̃(l)
s,t ∈ ( 1−a

b−a , 1]. Moreover, P(g(l)
s,t 6= 0) = Θ(β(l)

s,t −
τ ln −ab ).

See its proof in Appendix ??. Theorem 3 shows that the gate g(l)
s,t can achieve exact zero, which

can reduce information loss caused by pruning at the end of search. Next based on the activation
probability P(g

(l)
s,t 6=0) in Theorem 3, we design group-structured sparsity regularizations. We collect

all skip connections in the cell as a skip-connection group and take the remaining operations into
non-skip-connection group. Then we compute the average activation probability of these two groups:

Lskip(β)=ζ

h−1∑
l=1

l−1∑
s=0

Θ
(
β

(l)
s,tskip
−τ ln

−a
b

)
, Lnon-skip(β)=

ζ

r − 1

h−1∑
l=1

l−1∑
s=0

∑
1≤t≤r,t 6=tskip

Θ
(
β

(l)
s,t−τ ln

−a
b

)
,

where ζ= 2
h(h−1) . Then we respectively regularize Lskip and Lnon-skip by two different regularization

constants λ1 and λ2 (λ1 > λ2 in experiments). This group-structured sparsity has three benefits:

6



(1) penalizing skip connections heavier than other types of operations can rectify the competitive
advantage of skip connections over other operations and avoids skip-connection-dominated cell; (2)
sparsity regularizer gradually and automatically prunes redundancy and unnecessary connections
which reduces the information loss of pruning at the end of search; (3) sparsity regularizer defined on
the whole cell can encourage global competition and cooperation of all operations in the cell, which
differs from DARTS that only introduces local competition among the operations between two nodes.

4.2 Path-depth-wise Regularizer on Operation Gates

concatenation

……

…… prediction

……

prediction

concatenation

……

……
(a)

concatenation

……

…… prediction

……

prediction

concatenation

……

……

(b)
Figure 3: Illustration of a deep cell (a)
and a shallow cell (b).

Except for the above advantages, independent sparse gates
also introduce one issue: they prohibit the method to select
deep cells. Without dominated skip connections in the cell,
other types of operations, e.g. zero operation, become freer
and are widely used. Accordingly, the search algorithm
can easily transform a deep cell to a shallow cell whose
intermediate nodes connect with input nodes via skip con-
nections and whose intermediate neighboring nodes are
not connected via zero operations. Meanwhile, gradient
descent algorithm prefers shallow cells than deep ones, as
shallow cells often have more smooth landscapes and can
be faster optimized. So these two factors together lead to a
bias of search algorithm to shallow cells. Here we provide
an example to prove the faster convergence of shallow cells.
SupposeX(l)(l=0,· · ·, h−1) are in two branches in Fig. 3
(b): nodes X(0) to X(

h
2−1) are in one branch with input X and they are connected via (7), and

X(l) (l= h
2 , · · · , h−1) are in another branch with input X and connection (7). Next, similar to

DARTS we use all intermediate nodes to obtain a squared loss in (5). Then we show in Theorem 4
that the shallow cell B in Fig. 3 (b) enjoys much faster convergence than the deep cell A in Fig. 3 (a).
Note for cell B, when its nodeX(h/2) connects with nodeX(l)(l < h/2− 1), we have very similar
results.
Theorem 4. Suppose the assumptions in Theorem 1 hold and for each g(l)

s,t (0 ≤ s <
l ≤ h − 1) in deep cell A, it has the same value in shallow cell B if it occurs in B.
When optimizing W in Ftrain(W ,β) via gradient descent (6), both losses of cells A and B
obey Ftrain(W (k + 1),β) ≤ (1−ηλ′/4)Ftrain(W (k),β), where λ′ in A is defined as λA =
3cσ
4 λmin(K)

∑h−2
s=0 (g(h−1)

s,3 )2
∏s−1
t=0 (g(s)

t,2)2, while λ′ in B becomes λB and obeys λB ≥ λA +
3cσ
4 λmin(K)

∑h−1
s=h/2(g(h−1)

s,3 )2
∏s−1
t=h/2(g(s)

t,2)2 > λA.

See its proof in Appendix ??. Theorem 4 shows that when using gradient descent to optimize the
inner-level loss Ftrain(W ,β) equipped with independent gates, shallow cells can faster reduce the
loss Ftrain(W ,β) than deep cells. As training and validation data come from the same distribution
which means E[Ftrain(W,β)]=E[Fval(W,β)], shallow cells reduce Fval(W ,β) faster in expectation
which accords with the theoretical and empirical results in [40]. So it is likely that to avoid deep
cells, search algorithm would connect intermediate nodes with input nodes and cut the connection
between neighboring nodes via zero operation, which is indeed illustrated by Fig. 1 (b). But it leads
to cell-selection bias in the search phase, as some cells that fast decay the loss Fval(W ,β) at the
current iteration have competitive advantage over other cells that reduce Fval(W ,β) slowly currently
but can achieve superior final performance. This prohibits us to search good cells.

To resolve this cell-selection bias, we propose a path-depth-wise regularization to rectify the unfair

competition between shallow and deep cells. From Theorem 3, the probability thatX(l) andX(l+1)

are connected by parameterized operations Op, e.g. various types of convolutions, is Pl,l+1(β)

=
∑
Ot∈Op

Θ
(
β(l+1)

l,t −τ ln −ab
)
. So the probability that all neighboring nodes X(l) and X(l+1)

(l = 0, · · · , h− 1) are connected via operationsOp, namely, the probability of the path of depth h, is

Lpath(β) =
∏h−1

l=1
Pl,l+1(β) =

∏h−1

l=1

∑
Ot∈Op

Θ
(
β

(l+1)
l,t − τ ln

−a
b

)
. (8)

Here we do not consider skip connection, zero and pooling operations, as they indeed make a network
shallow. To rectify the competitive advantage of shallow cells over deep ones, we impose path-depth-
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Table 1: Classification errors (%) on CIFAR10 (C10) and CIFAR100 (C100).

Architecture Test Error (%) Params Search Cost Search space Search
C10 C100 (M) (GPU-days) #Ops/zero method

DenseNet-BC [43] 3.46 17.18 25.6 — — manual
NASNet-A + cutout [2] 2.65 — 3.3 1800 13 RL

AmoebaNet-B + cutout [4] 2.55 — 2.8 3150 19 evolution
PNAS [44] 3.41 — 3.2 225 8 SMBO

ENAS + cutout [3] 2.89 — 4.6 0.5 6 RL
DARTS (first-order) + cutout [6] 3.00 17.76 3.3 1.5 7 gradient-based

DARTS (second-order) + cutout [6] 2.76 17.54 3.3 4.0 7 gradient-based
SNAS (moderate) + cutout [14] 2.85 — 2.8 1.5 7 gradient-based

P-DARTS + cutout [7] 2.50 16.55 3.4 0.3 7 gradient-based
BayesNAS + cutout [45] 2.81 — 3.4 0.18 7 gradient-based
PC-DARTS + cutout [15] 2.81 — 3.6 0.13 7 gradient-based

GDAS + cutout [11] 2.93 — 3.4 0.21 7 gradient-based
Fair DARTS + cutout [8] 2.54 — 2.8 0.4 7 gradient-based

PR-DARTS + cutout 2.32 16.45 3.4 0.17 7 gradient-based

wised regularization −Lpath(β) on the stochastic gates to encourage more exploration to deep cells
and then decide the depth of cells instead of greedily choosing shallow cell at the beginning of search.

Now we are ready to define our proposed PR-DARTS model as follows:

min
β
Fval(W

∗(β),β)+λ1Lskip(β)+λ2Lnon-skip(β)−λ3Lpath(β), s.t.W ∗(β)=argminW Ftrain(W ,β),

where W denotes network parameters, β denotes the parameters for the stochastic gates. Similar
to DARTS, we alternatively update parameters W and β via gradient descent. See optimization
details in Algorithm ?? of Appendix ??. After searching, following DARTS, we prune redundancy
connections according to the activation probability in Theorem 3 to obtain more compact cells.

5 Experiments

Here we evaluate PR-DARTS on classification task and compare it with representative state-of-the-art
NAS approaches, including RL based NAS, EA based NAS and differential NAS methods. Code is
available at https://panzhous.github.io/.

Datasets. CIAFR10 [41] and CIFAR100 [41] contain 50K training and 10K test images which are of
size 32× 32 and distribute over 10 classes in CIFAR10 and 100 classes in CIFAR100. ImageNet [42]
has 1.28M training and 50K test images which roughly equally distribute over 1K object categories.

Implementations. In the search phase, each cell contains two input nodes (outputs of two previous
cells), four intermediate nodes and one output node (concatenation of all intermediate nodes). Then
we stack k cells for search. The k/3- and 2k/3-th cells are reduction cells in which all operations
have a stride of two, and the remaining cells are normal cells with operation stride of one. Reduction
cells share the same architecture and normal cells also have the same architecture. The operation set
O has eight choices: zero operation, skip connection, 3×3 and 5×5 separable convolutions, 3×3
and 5×5 dilated separable convolutions, 3×3 average pooling and 3×3 max pooling. For fairness,
all above settings follow the convention [1, 2, 4, 6]. For each cell, we use the input node which is
the output of the previous cell to construct the path-depth-wise regularization in (8) as illustrated by
Fig. 1 (c).

5.1 Results on CIFAR

In the search phase, following [6] we stack 8 cells with channel number 16. We divide 50K training
samples in CIFAR10 into two equal-sized training and validation datasets. In PR-DARTS, we set
λ1 =0.01, λ2 =0.005, and λ3 =0.005 for regularization. Then we train the network 200 epochs with
mini-batch size 128. For acceleration, per iteration, we follow [11] and randomly select only two
operations on each edge to update. We respectively use SGD and ADAM [46] to optimize parameters
W and β with detailed settings in Appendix ??. We set temperature τ=10 and linearly reduce it to
0.1, a= −0.1 and b=1.1. For pruning on each node, we compare the gate activation probabilities of
all non-zero operations collected from all previous nodes and retain top two operations [6] .

For evaluation on CIFAR10 and CIFAR100, we set channel number 36 and then stack 18 normal
cells and 2 reduction cells (the 7- and 14-th cells) to build a large network. We train the network 600
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Table 2: Classification errors (%) on ImageNet (all methods use the cells searched on CIFAR10).

Architecture Test Error (%) Params ×+ Search Cost Search space Search
Top-1 Top-5 (M) (M) (GPU-days) #Ops/zero method

MobileNet [49] 29.4 10.5 4.2 569 — — manual
ShuffleNet2×(v2) [50] 25.1 — ∼5 591 — — manual

NASNet-A [2] 26.0 8.4 5.3 564 1800 13 RL
AmoebaNet-C [4] 24.3 7.6 6.4 570 3150 19 evolution

PNAS [44] 25.8 8.1 5.1 588 225 8 SMBO
MnaNet-92 [5] 25.2 8.0 4.4 388 — hierarchical RL

DARTS (second-order) [6] 26.7 8.7 4.7 574 4.0 7 gradient-based
SNAS (mild) [14] 27.3 9.2 4.3 522 1.5 7 gradient-based

P-DARTS [7] 24.4 7.4 4.9 557 0.3 7 gradient-based
BayesNAS [45] 26.5 8.9 3.9 — 0.18 7 gradient-based
PC-DARTS [15] 25.1 7.8 5.3 586 0.13 7 gradient-based

GDAS [11] 26.0 8.5 5.3 581 0.21 7 gradient-based
Fair DARTS [8] 24.9 7.5 4.8 541 0.4 7 gradient-based

PR-DARTS 24.1 7.3 4.98 543 0.17 7 gradient-based

epochs with a mini-batch size of 128 from scratch. See detailed settings of SGD in Appendix ??. We
also use drop-path with probability 0.2 and cutout [47] with length 16, for regularization.

Table 1 summarizes the classification results on CIFAR10 and CIFAR100. In merely 0.17 GPU-days
on Tesla V100, PR-DARTS respectively achieves 2.31% and 16.45% classification errors on CIAR10
and CIFAR100, with both search time and accuracy significantly surpassing the DARTS baseline. By
comparison, PR-DARTS also consistently outperforms other NAS approaches, including differential
NAS (e.g. P-DARTS, PC-DARTS), RL based NAS (e.g. NASNet), as well as EA based NAS
(e.g.Amobdanet). These results demonstrate the superiority and transferability of the selected cells by
PR-DARTS. As shown in Fig. 1, this advantage comes from the group-structured binary gates and
path-depth-wise regularization in PR-DARTS which can well alleviate unfair operation competition
and cell-selection bias to shallow cells which are not well considered in the compared NAS methods.
Fair DARTS imposes independent sigmoid distribution and zero-one loss for each operation, which
actually does not encourage the important global operation competition and cooperation. PR-DARTS
runs faster over DARTS, because (1) the sparsity regularization prunes unnecessary connections as
illustrated in Fig. ?? in Appendix ??, and thus reduces the costs; and (2) following [11] we randomly
select only two operations instead of eight operations between two nodes to update per iteration, also
helping reducing cost. Note, Proxyless NAS [13] reports an error rate of 2.08% on CIAFR10, but it
performs architecture search on the tree-structured PyramidNet [48] which is much complex protocol
than the DARTS search space in this work, and requires much longer time (4 GPU-days) for search.

For ablation study, Fig. 1 shows the individual benefits of the two complementary components,
group-structured binary gates and path-depth-wise regularization, in PR-DARTS. See details in Fig. 1.
Due to space limit, Appendix ?? investigates the effects of regularization parameters λ1∼λ3 to the
performance of PR-DARTS. The results show the stable performance of PR-DARTS on CIAFR10
when tuning these parameters in a relatively large range, and thus testify the robustness of PR-DARTS.

5.2 Results on ImageNet

We further evaluate the transferability of the cells selected on CIFAR10 by testing them on more
challenging ImageNet. Following DARTS, we rescale input size to 224× 224. We stack three convo-
lutional layers,12 normal cells and 2 reduction cells (channel number 48) to build a large network,
and train it 250 epochs with mini-batch size 128. See detailed settings of SGD in Appendix ??.

Table 2 reports the results on ImageNet. One can observe that PR-DARTS consistently outperforms
the compared state-of-the-art approaches. In particular, it respectively improves DARTS by 2.4% and
1.4% on top-1 and top 5 accuracies. These results demonstrate the superior transferability of the cells
selected by PR-DARTS behind which the potential reasons have been discussed in Sec. 5.1.

6 Conclusion

In this work, for the first time we theoretically explicitly show the benefits of more skip connections to
fast network optimization in DARTS, explaining the dominated skip connections in the selected cells
by DARTS. Then inspired by our theory, we propose PR-DARTS to improve DARTS by using group-
structured binary gates and path-depth-wise regularization to alleviate unfair operation competition
and cell-selection bias to shallow cells. Experimental results validated the advantages of PR-DARTS.
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Broader Impacts

This work advances network architecture search (NAS) in both theoretical performance analysis and
practical algorithm design. As NAS can automatically design state-of-the-art architectures, this work
alleviates substantial efforts from domain experts for effective architecture design, and could also
help develop more intelligent algorithms. But NAS still needs an expert-designed search space which
may have bias and prohibit NAS development. So automatically designing search space is desirable.
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