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Observation: SGD Generalizes Better Than ADAM in Deep Learning

Important observations: SGD often generalizes better than adaptive gradient algorithms, e.g. ADAM
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Why SGD Achieves Better Generalization Performance Than ADAM?

Empirical explanation: adaptive gradient algorithms often converge to sharp minima, while SGD

prefers to find flat minima at the flat or asymmetric basins/valleys.
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Problem: why SGD often converges to flat minima, while adaptive gradient algorithms do not?



Stochastic Differential Equation (SDE) Based Analysis

Observation: stochastic gradient noise in SGD/ADAM "
approximately obey symmetric c-stable distribution
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where the levy gradient noise L+ is characterized by tail index v, € = n{®—1)/e  the variance matrix
of gradient noise ;=< [% ?:yf@-(Ot)Vfi(Ot)T—VF(et)VF(Ot)TE].
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where Q,=diag(/wivi+te), pi=1/(1—e""1%); w;=1/(1—e~"2") 4



Escaping Time Analysis

 Assume SGD and ADAM get stuck in a basin €2, i.e. @y € €2
« Define the escaping time I" from {2 as
C'=inf{t>0]|0; ¢ Q ="}, i

where Q¢ = {y € Q|dis(02,y) > 7} ~ €, the constant 7 satisfies lim. o &” = 0.

Define an escaping set WW of basin §2
W={ycR?| Q' Ze:y g Q '},
whereX g+ = lim 3 for both SGD and ADAM, Qg+« = I in SGD and Qg+ =, lintl9 Q. in ADAM.
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Theorem 1 (Bound of escaping time, informal).
Under proper assumptions, to escape the basin{2, the escaping time of SGD and ADAM is

b= O(@mt\/\i))7

where m(W) is non-zero Radon measure of YW, © = —¢® in which « is the tail index of
stochastic gradient noise o




Escaping Time Comparison of SGD and ADAM

The escaping time I’ to escape from {2 is at the order of

r=o(

Om(W) )

2
e Factorl. © = —&¢
(@7

* With same learning rate € in ADAM and SGD, the smaller tail index ¢, the smaller the escaping time.
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 For some iterations, SGD has smaller (¢, as exponential gradient average in ADAM smooths noise
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Escaping Time Comparison of SGD and ADAM

The escaping time I’ to escape from {2 is at the order of
rzo(

@m(W))
* Factor 2. m(W)
* It positively depends on the volume of escaping set W = {y € R | Q;}Eg* y & Q_gﬁy}

Theorem 2 (Comparison of escaping set, informal).
Under proper approximation, the escaping set of SGD is much larger than that of ADAM is

Wabpam < WsabD

which directly gives m(Wapam) < m(Wsaep) and P'wapan > T'wen -

* From Factors 1 & 2, SGD is much more unstable, as SGD has smaller escaping time.



SGD Prefers To Flatter Minima

From theory, both SGD and ADAM prefers to find minima at flat or asymmetric basins.

* The escaping time I' to escape from {2 is at the order of

F:O(@mEW))

Both SGD and ADAM prefers to escape from the basin with small volume (Radon measure)

smaller 2 — larger YW — larger m(VV) — smaller I' — more unstable at small 2

e Flat or asymmetric basins often have large volume than sharp one.
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SGD Prefers To Flatter Minima

From theory, both SGD and ADAM prefers to find minima at flat or asymmetric basins.

* The escaping time I' to escape from {2 is at the order of

P:O(@rmiW))

Both SGD and ADAM prefers to escape from the basin with small volume (Radon measure).

smaller 2 — larger YW — larger m(VV) — smaller I' — more unstable at small 2

e Flat or asymmetric basins often have large volume than sharp one.

For the same basin, SGD is more unstable than ADAM.

SGD could better escape from sharp minima and converge to flatter minima.



Thanks !
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