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Problem Setup

Observations: SGD often generalizes better than adaptive gradient algorithms, e.g. ADAM?

Empirical explanation: adaptive gradient algorithms often converge to sharp minima, while
SGD prefers to find flat minima at the flat or asymmetric basins/valleys.

Problem: why SGD often converges to flat minima, while adaptive gradient algorithms, e.g.
ADAM, do not?

Stochastic Differential Equation (SDE) Based Analysis

Observation: stochastic gradient noise ut in SGD and ADAM are heavy-tailed and
approximately obey symmetric α-stable (SαS) distribution

ut = ∇Fθt −∇fSt(θt), (1)
where F (θ) = 1

n

∑n
i=1 fi(θ) is the objective function, fSt(θt) = 1

S

∑
i∈St

fi(θt) is a mini-batch loss.
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(a) ADAM (b) SGD

Assumption: Assume ut obeys SαS distribution with a time-dependent covariance matrix
Σt

Σt =
1
S

[1
n

∑n

i=1
∇fi(θt)∇fi(θt)

T −∇F (θt)∇F (θt)
T
]
.

to better characterize the underlying structure in the gradient noise ut.

Levy-driven SDE of SGD:

θt+1 = θt − η∇fSt(θt)
SGD−→ dθt = −∇F (θt) + εΣtdLt, (2)

where ε = η(α−1)/α. The i-th entry Lt ,i in Lévy motion Lt ∈ Rd obeys the SαS(1) distribution, i.e.
E[exp(iωx)] = exp(−σα|ω|α) if x ∼ SαS(σ). SαS distribution has decay density like 1/|x |1+α.

Levy-driven SDE of ADAM:
θt+1 = θt − ηmt/(1− βt

1)/
(√

v t/(1− βt
2) + ε

)
,

mt = β1mt−1 + (1− β1)∇fSt(θt),

v t = β2v t−1 + (1− β2)[∇fSt(θt)]2,

ADAM−→


dθt = −µtQ−1

t mt + εQ−1
t ΣtdLt,

dmt = β1(∇F (θt)−mt),

dv t = β2([∇fSt(θt)]2− v t),

(3)
where ε=η(α−1)/α, Qt =diag (

√
ωtv t + ε), µt =1/(1− e−β1t) and ωt = 1/(1− e−β2t) are two

constants to correct the bias in mt and v t.

Main Results

Define the escaping time Γ from Ω as (constant γ > 0 satisfies limε→0 ε
γ = 0)

Γ = inf{t ≥ 0 | θt /∈ Ω−ε
γ}

Define the escaping setW at the basin Ω as
W = {y ∈ Rd | Q−1

θ∗ Σθ∗y /∈ Ω−ε
γ},

where Σθ∗ =limθt→θ∗Σt for both SGD and ADAM, and Qθ∗= I for
SGD and Qθ∗=limθt→θ∗Qt for ADAM.

Assumption 1: For ADAM and SGD, the objective F (θ) is upper-bounded
non-negative, and is locally µ-strongly convex and `-smooth in the basin Ω.

Assumption 2: For ADAM, a)
∫ Γ

0

〈 ∇F (θs)
1+F (θs),µsQ−1

s ms
〉
ds≥0 a.s.;

b) ‖mt −m̂t‖≤τm‖
∫ t−

0 (ms −m̂s)ds‖ and ‖m̂t‖≥τ‖∇F (θ̂t)‖
where m̂t and θ̂t are obtained by Eqn. (3) with ε = 0;
c) the i-th entry v t ,i of v t obeys vmin ≤

√v t ,i ≤ vmax (∀i , t);
d) β1 ≤ β2 ≤ 2β1.

Escaping time of SGD and ADAM. Suppose Assumptions 1 and 2 hold. Let ρ0 =
1

16(1+c2κ1) and ln
( 2∆
µε1/3

)
≤κ2ε

−1
3 with ∆ = F (θ0) −F (θ∗) and a constant c2. Then for any

θ0∈ Ω−2εγ, ε ∈ (0, ε0], γ ∈ (0, γ0] and ρ ∈ (0, ρ0] satisfying εγ ≤ ρ0 and limε→0 ρ = 0,
SGD in (2) and ADAM in (3) obey

Γ = O
(

1
m(W)Θ

)
,

where m(W) denotes the non-zero Radon measure of the escaping set W in
SGD and ADAM, Θ = 2

αε
α in which in which α is the tail index of stochastic gradi-

ent noise.

Result 1: Preference to Flat Minima

Definition of “flat” minima: A minimum θ∗∈Ω is said to be flat if its basin Ω has
large nonzero Radon measure.

Due to m(W), both ADAM and SGD have large escaping time Γ at the “flat” minima.

I Define complementary setWc ofW as
Wc = {y ∈Rd | Q−1

θ∗ Σθ∗y ∈Ω−ε
γ}.

large measure of Ω −→ large m(Wc) −→ small m(W) (m(W∪Wc)=constant)
−→ large escaping time Γ.

I Minima with large Radon measure often refers to the conventional flat minima or
the minima at the asymmetric basin, since 1) Radon measure positively rely on the
volume of the basin and 2) the flat or asymmetric basin often has large volume.

Result 2: Better Sharp Minima Escaping Ability of SGD over ADAM

Factor 1 Θ = 2
αε

α

I with same learning rate ε in ADAM and SGD, the smaller tail index α, the
smaller the escaping time Γ.

I for some iterations, SGD has smaller α , as exponential gradient average
in ADAM smooths noise.
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(a) MNIST (over-parameterized fully connected networks)
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(b) CIFAR10 (over-parameterized fully connected networks)

Factor 2 m(W) that positively depends on the volume of escaping setW .

Approximating Ω as a quadratic basin with center θ∗, i.e.

Ω =
{

y | F (θ∗) +
1
2

yTH(θ∗)y ≤ h(θ∗)
}

with a basin height h(θ∗) and Hessian matrix H(θ∗) at θ∗.

Comparison of Escaping Sets of SGD and ADAM . Under the quadratic
basin approximation, the escaping setW of ADAM is

WADAM ≈
{

y ∈ Rd
∣∣ yTH(θ∗)y≥S2h∗f

}
.

and it satieties
m(WADAM) < m(WSGD)

where WSGD =
{

y ∈ Rd
∣∣yTΣ̄θ∗H(θ∗)Σ̄θ∗y ≥ S2h∗f

}
is escaping set of

SGD and Σ̄θ∗ = 1
n

∑n
i=1∇fi(θ∗)∇fi(θ∗)T .

Conclusion: SGD could better escape from sharp minima and
converge to flatter minima, since

I from Factors 1 and 2, SGD has smaller escaping time and is much more
unstable. For the same basin, ADAM could stuck in one basin, but SGD
could not.

I both SGD and ADAM prefers to converge to flat minima


