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Background: What Is NAS?
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NAS (network architecture search) aims to automatically select a proper operation from an

operation set for each edge in a dense graph
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Background: What Is NAS?
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Solution: reinforcement learning (RL) and evolutionary

algorithms (EA) are used to solve this discrete operation 

selection problem.

discrete search space:
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Issue: huge search space

E.g. a graph of 10 nodes has possible operation

selections if the operation set is of size 7

To reduce cost, one often search a small network and then stack several cells to build a large one.

high computational cost (more than 3000 GPU days)



Differential Architecture Search (DARTS)
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DARTS converts discrete operation selection into continuously weighting a set of operations

H. Liu et al. DARTS: Differentiable Architecture Search, ICLR’19

discrete search space:
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discrete search to

continuous search
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continuous search space:

sum



Differential Architecture Search (DARTS)
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Since the weights of most operations are not exactly zero, one often needs to prune the

operations with small weight.

H. Liu et al. DARTS: Differentiable Architecture Search, ICLR’19

This posteriors pruning often leads to information loss, as it destroys the learnt architecture.
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Observation: Dominated Skip Connections in DARTS
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Problems:

1) why DARTS prefers to select so many skip connections?

2) how to avoid the dominated skip connections?

Observations: dominated skip connections in the architectures selected by DARTS 

62.5% skip
connections
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Formulations of DARTS

10

where                          respectively denote weights of zero, skip and convolution operations. 

• Dense directed graph via connecting current node with all previous nodes

• Prediction by feeding the features in all layers into a linear classifier

input
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Formulations of DARTS
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where                          respectively denote weights of zero, skip and convolution operations. 

• Dense directed graph via connecting current node with all previous nodes

• DARTS Model:

where the squared loss

• Prediction by feeding the features in all layers into a linear classifier

optimize architecture parameter

optimize network parameter



Theoretical Understanding of Dominated Skip Connections
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• Gradient descent for optimization:

inner optimization:

outer optimization:



Theoretical Understanding of Dominated Skip Connections
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• Gradient descent for optimization:

inner optimization:

Theorem 1 (Convergence for inner problem, informal).
Under proper assumptions, for inner problem, the gradient descent algorithm can
enjoy linear convergence rate:

where in which and
respectively denote weights of convolution and skip connections,

is a constant and is learning rate.
conv

zero

skip



Theoretical Understanding of Dominated Skip Connections
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Theorem 1 (Convergence for inner problem, informal).
For inner problem, the gradient descent algorithm can enjoy linear convergence rate:

where with constant and learning rate .

• Convergence rate depends on the weight of skip connects more heavily:



Theoretical Understanding of Dominated Skip Connections
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Theorem 1 (Convergence for inner problem, informal).
For inner problem, the gradient descent algorithm can enjoy linear convergence rate:

where with constant and learning rate .

• Convergence rate depends on the weight of skip connects more heavily:

weights of convolutions which connect the last node

……

concatenation linear classifier……
input data node



Theoretical Understanding of Dominated Skip Connections
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Theorem 1 (Convergence for inner problem, informal).
For inner problem, the gradient descent algorithm can enjoy linear convergence rate:

where with constant and learning rate .

• Convergence rate depends on the weight of skip connects more heavily:

weights of skip connections which do not connect the last node

……

concatenation linear classifier……
input data node



Theoretical Understanding of Dominated Skip Connections
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Theorem 1 (Convergence for inner problem, informal).
For inner problem, the gradient descent algorithm can enjoy linear convergence rate:

where with constant and learning rate .

• Convergence rate depends on the weight of skip connects more heavily:

weight product gives heavier dependence

……

concatenation linear classifier……
input data node



Theoretical Understanding of Dominated Skip Connections
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• Since training and validation data are drawn from a same distribution, we have

• When skip connections have larger weights, the validation loss can decrease faster

• Since all types of operations between two nodes share a softmax distribution

if weight of skip connection becomes larger, other weights become smaller. conv

zero

skip

outer optimization:

• In the outer level, DARTS will increase the weights of skip connections and reduce the
weights of other operations.



Theoretical Understanding of Dominated Skip Connections
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• After searching, the posterior pruning will preserve most of skip connections and prune
most of other operations.

0 3

sep_conv_3*3

sep_conv_5*5

dis_conv_5*5

dis_conv_3*3

max_pooling_5*5

max_pooling_3*3
skip_con

sum

0 3skip_con
pruning

• Our theoretical result can answer the first question:
why DARTS prefers to select so many skip connections?



Outline

Background: what is network architecture search

Theoretical analysis: why DARTS often select so many skip connections

Solution: group-structured sparse gate and path-depth-wise regularization

Experiments: higher efficiency and classification accuracy

Conclusion

20



Solution to Reduce Skip Connections
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One solution: independent gate implemented by Bernoulli distribution for each operation

Issue:

independent gate leads to a dense network and thus performance degradation,

since posterior pruning for a compact network prunes operations with non-zero weights.

conv
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Theorem 2 (Convergence for inner problem, informal).
When we replace the weights from a softmax distribution with the independent gate,
then increasing of any operations can reduce or maintain the validation loss.



Solution to Reduce Skip Connections
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Solution: group-structured sparsity regularization on the  stochastic gates

• Step 1. use Gumbel trick to produce an approximate Bernoulli variable

The gate can become sparse and its activation probability is computable.
sparse

• Step 2. rescale u from [0,1] to [a,b] (a<0, b>1), and feed into a hard threshold gate

where denotes the sigmoid function.

gate activation probability



Solution to Reduce Skip Connections
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Solution: group-structured sparsity regularization on the stochastic gates

• Step 3. divide the operations in the cell into two groups, skip connection group and non-skip 
connection group, and compute their average gate activation probabilities:

• Step 4. we penalize these two terms independently to avoid competition between skip 
connection and other type operations.



Solution to Reduce Skip Connections
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Solution: group-structured sparsity regularization on the stochastic gates

Advantages: this solution greatly reduce the skip connections in the selected network.

12.5% skip connections62.5% skip connections 3.4% relative improvement



Solution to Avoid Shallow Networks
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Issues of independent gates: searching algorithm prefers to select shallow networks due 
to their faster convergence rate over deep ones.

Theorem 2 (Convergence Comparison between shallow and deep networks, informal)
With proper assumptions, shallow network B can converge faster than the deep network A.

(a) Deep network A (b) Shallow network B

depth of h depth of h/2



Solution to Avoid Shallow Networks
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Solution: path-depth-wise regularization 
• Step 1. probability that all neighboring nodes are connected via parameterized operations

connected by learnable parameterized operations, e.g. various types of convolutions

……

concatenation linear classifier……
input data node

corresponding activation probability of parameterized operations



Solution to Avoid Shallow Networks
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Solution: path-depth-wise regularization 
• Step 1. probability that all neighboring nodes are connected via parameterized operations

• Step 2. we encourage the selected model to be deep via penalizing small



Solution to Avoid Shallow Networks
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Solution: path-depth-wise regularization 

Advantages: this solution can search much deeper networks than DARTS.

depth of 4depth of 1 5.2% relative improvement



Network Architecture Search Model
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• Architecture search model (PR-DARTS):

• Advantages:

(1) it avoids unfair competition between skip and non-skip connections 

(2) it avoids unfair competition between shallow and deep networks

optimize network parameter

optimize architecture parameter
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Experimental Results
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Search Time on CIFAR10: much higher search efficiency

43.33% relative improvement
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Accuracy on CIFAR10 and ImageNet: much smaller classification error
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0.8% relative
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Conclusion
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• Problems:

(1) why DARTS prefers to select so many skip connections?

more skip connections lead to faster convergence speed and thus are selected.

(2) how to avoid the dominated skip connections?

we propose a group-structured sparsity regularization and a path-depth-wise
regularization



Thanks !
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