Problem Setup

What is NAS (network architecture search)? It aims to automatically select a proper operation from an operation set for each edge in a dense graph.

DARTS converts discrete operation selection into continuously weighting a set of operations.

Main Results

Gradient descent for optimization:

inner optimization: \(W^1_t(k+1) = W^1_t(k) - \alpha \nabla \mathcal{L}(W_t, \alpha) \)

outer optimization: \(\alpha^t(k+1) = \alpha^t(k) - \alpha \nabla \mathcal{L}(W^1_t, \alpha) \)

Convergence of inner optimization. Under proper assumptions, for inner problem, the gradient descent algorithm can enjoy linear convergence rate:

\[F_{\alpha}(W(k+1), \alpha) \leq (1 - \lambda) F_{\alpha}(W(k), \alpha) \]

where \(\lambda = c_0 \sum_{t=1}^{\infty} \left(\alpha^t \right)^2 \), in which \(\alpha^t \) and \(\alpha \) respectively denote weights of skip and convolutional connections, is a constant and \(\alpha \) is learning rate.

Convergence Comparison. With proper assumptions, shallow network \(B \) can converge faster than the deep network \(A \).

Observations: dominated skip connections in the architectures selected by DARTS

Problem:

1) why DARTS prefers to select so many skip connections?

2) how to avoid the dominated skip connections?

Solution to Alleviate Unfair Competition among Operations

Step 3. divide operations in network into skip connection and non-skip connection groups, compute their average gate activation probabilities:

\[\mathcal{L}_{\text{skip}}(\beta) = \sum_{\mathcal{S}} \mathbb{E} \left[\beta_{\mathcal{S}} \right] - \ln \left(\frac{2}{\beta_{\mathcal{S}}} \right) \]

Step 4. penalize \(\mathcal{L}_{\text{skip}}(\beta) \) and \(\mathcal{L}_{\text{non-skip}}(\beta) \) independently to avoid competition between skip connection and other type operations.

Issue 2 of independent gate: searching algorithms prefer to select shallow networks due to their faster convergence rate over deep ones.

Final Model:

\[\min_{\beta, W} \mathcal{L}_{\text{skip}}(\beta) + \lambda \mathcal{L}_{\text{non-skip}}(\beta) \]

Experiments

- CIFAR10: 99.3% test accuracy on efficient model
- CIFAR100: 74.3% test accuracy on efficient model
- ImageNet: 73.6% test accuracy on efficient model