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* Training model: given a task distribution 7, we minimize a bi-level meta learning model
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where T; ~ T has K training samples D, = {(x;, y;)}2,

Lp, =+ Z(w,y)EDTi ((f(w,x),y) is empirical loss with predictor f and loss ¢.
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* Training model: given a task distribution 7, we minimize a bi-level meta learning model

update task-specific solution
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Meta Learning via Minibatch Proximal Update (Meta-MinibatchProx)

Meta-MinibatchProx learns a good prior model initialization w from observed tasks such that

w is close to the optimal models of new similar tasks, promoting new task learning

* Test model: given a randomly sample a task T" ~ 7 consisting of K samples Dy = {(x;,y,) fil

MiNg,.,. Lp, (’wT) + %Hw — wTH%?

* Benefit: a few data is sufficient for adaptation sinall distance in
. i . ati
prior model w is close to optimum w o exg%;lon
w

when training and test tasks are from a same distribution 7.
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We use SGD based algorithm to solve bi-level training model :
ming, {F(w) := miny, > ;" Lp, (wr,)+ 2w —wr,

 Stepl. select a mini-batch of task {7} .
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Optimization Algorithm

We use SGD based algorithm to solve bi-level training model :

ming, {F(w) := miny, > ;" Lp, (wr,)+ 2w —wr,

 Stepl. select a mini-batch of task {7} .

e Step2.forT;, compute an approximate minimizer:
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Optimization Algorithm

We use SGD based algorithm to solve bi-level training model :

ming {F(w) :=miny, Y. Lp, (wr,)+ 3

 Stepl. select a mini-batch of task {7} .

e Step2.forT;, compute an approximate minimizer:

wr; ~ argmiani {g(wTi) at ‘CDT,L- (waL) + 3

e Step3. update the prior model
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Optimization Algorithm

We use SGD based algorithm to solve bi-level training model :

ming, {F(w) := miny, > ;" Lp, (wr,)+ 2w —wr,

2
3}
 Stepl. select a mini-batch of task {7} .

e Step2.forT;, compute an approximate minimizer:

wr, & argmin,,, {g(wr,) =: Lp,, (wr,) + 5llw — wr,

3} st IVg(wr)[3 < e

e Step3. update the prior model
bs
w=w — NsA(w — i > 2L wTy)

Theorem 1 (convergence guarantees, informal).
(1) Convex setting, i.e. convex ¢pr, (w). We prove E[||w® — w*||3] < O(<).

(2) Nonconvex setting, i.e. smooth ¢p,. (w) . We prove E[||VE (w?®)||3] < O(%)



Generalization Performance Guarantee

Ideally, for a given task T, one should train the model on the population risk

Population solution: wp = argmin,, E ,)~rl(f(wr,x),y).

In practice, we only has K samples and adapt the prior model w™ to the new task:

Empirical solution: w4 = argmin,, Lp,(wr)+ 5|w* — wr]3.
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Generalization Performance Guarantee

* Ideally, for a given task T, one should train the model on the population risk

Population solution: wp = argmin,, E ,)~rl(f(wr,x),y).

* |n practice, we only has K samples and adapt the prior model w™ to the new task:

Empirical solution: w4 = argmin,, Lp,(wr)+ 5|w* — wr]3.

* Sincew?p + w7, why w7 is good for generalization in few-shot learning problem?

Theorem 2 (generalization performance guarantee, informal).

Suppose each loss ¢DT7; (w) is convex and is smooth. Let Dy = {(x;, y;) fil ~ T'. Then we have

C

ErnrEp,ar(L(w) - L(w})) < £E[lw” — wh3)

Remark: strong generalization performance, as our training model guarantee

prior w*is close to the optimum model W} .



Experimental results

Few-shot regression : smaller mean square error (MSE) between prediction and ground truth
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