
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Tensor Low-rank Representation for Data
Recovery and Clustering

Pan Zhou, Canyi Lu, Member, IEEE, Jiashi Feng, Zhouchen Lin, Fellow, IEEE, Shuicheng Yan, Fellow, IEEE

Abstract—Multi-way or tensor data analysis has attracted increasing attention recently, with many important applications in practice.
This paper develops a tensor low-rank representation (TLRR) method, which is the first approach that can exactly recover the clean
data of intrinsic low-rank structure and accurately cluster them as well, with provable performance guarantees. In particular, for tensor
data with arbitrary sparse corruptions, TLRR can exactly recover the clean data under mild conditions; meanwhile TLRR can exactly
verify their true origin tensor subspaces and hence cluster them accurately. TLRR objective function can be optimized via efficient
convex programing with convergence guarantees. Besides, we provide two simple yet effective dictionary construction methods, the
simple TLRR (S-TLRR) and robust TLRR (R-TLRR), to handle slightly and severely corrupted data respectively. Experimental results
on two computer vision data analysis tasks, image/video recovery and face clustering, clearly demonstrate the superior performance,
efficiency and robustness of our developed method over state-of-the-arts including the popular LRR [1] and SSC [2] methods.

Index Terms—Tensor Low-rank Representation, Low-rank Tensor Recovery, Tensor Data Clustering

F

1 INTRODUCTION

T HIS paper studies the problem of recovering 3-way tensor
data from noisy observations with corruption and clustering

them as well. Formally, suppose one is provided with a 3-way
noisy tensor X ∈ Rn1×n2×n3 which is composed of a clean low-
rank tensor L0 and an additional sparse noise component E0:

X = L0 + E0. (1)

W.l.o.g., we assume samples are distributed along the second
dimension (or mode) of X , i.e., X (:, t, :) denotes the t-th sample
as shown in Fig. 1, and the samples L0(:, t, :) are drawn from
one of k independent linear tensor subspaces (see Sec. 5.2). We
aim to exactly recover the low-rank tensor L0 from X and cluster
n2 samples L0(:, t, :) into k clusters according to their affilia-
tion with the k tensor subspaces. This problem is important for
many applications, including image/video denoising [1], [3], data
clustering [4], [5], saliency detection [6], and visual tracking [7].

This problem is well studied in the matrix domain. For
instance, the matrix-based low-rank representation (LRR) algo-
rithm [3], [4] clusters vector-valued samples into corresponding
subspaces by seeking low-rank linear representations of all the
samples w.r.t. a given dictionary. The representation coefficients
encode subspace membership of the samples on which standard
clustering methods can be applied to obtain sample clusters. But
LRR and its variants [8], [9] are limited to 2-way data. Usually
realistic data are in multi-way, e.g. videos, image collections
and finance data. Naively flattening them into a big matrix and
applying LRR-alike algorithms would lead to performance drop
because the data intrinsic multi-way structure is destroyed [10]–
[13]. Recently, some tensor analysis based works, e.g., [13], [14],

• P. Zhou and J. Feng are with the Department of Electrical and Com-
puter Engineering, National University of Singapore, Singapore (email:
pzhou@u.nus.edu, elefjia@nus.edu.sg).

• C. Lu is with the Department of Electrical and Computer Engineering,
Carnegie Mellon University, USA (email: canyilu@gmail.com).

• Z. Lin is with the Key Lab. of Machine Perception (MoE), School of EECS,
Peking University, China (corresponding author, email: zlin@pku.edu.cn).

• S. Yan is with YITU Tech, Shanghai, China (email: eleyans@nus.edu.sg).

𝒏𝟐

𝒏𝟑

Corrupted “low-rank” tensor Dictionary Representation coefficient

𝒏𝟏

Sparse noise

(Sample direction)
Recovered clean tensor

Fig. 1: Illustration of the proposed TLRR method for tensor data
recovery and clustering. By exploiting intrinsic low-rank structure
of the input tensor data X , TLRR can effectively recover the
underlying low-rank tensor L in presence of sparse noise E , and
cluster the samples in X (encoded by Z under dictionary A).

are proposed to recover the clean data L0 from X . However, these
methods do not learn the relations among samples and cannot
cluster them either. Later, Fu et al. [15] integrated Tuker decom-
position [16] with sparse coding [17] to simultaneously learn the
low-rank spatial relations among samples and the linear relations
of samples in the feature space for tensor data clustering. But their
proposed TLRRSC method still requires reshaping 2-way data into
vectors and thus suffers degraded performance [10], [11], [13].
Zhang et al. [18] proposed a low-rank tensor constrained multi-
view subspace clustering method (LT-MSC), which performs LRR
on the data matrix in each view with a unified low-rank constraint
on the tensor consisting of all representation matrices. However,
LT-MSC requires several kinds of features to construct the multi-
view data. Besides, both TLRRSC and LT-MSC have no theo-
retical guarantee for data recovery and clustering. Though deep
learning has achieved great success in many applications [19],
[20], it cannot well solve the recovery and clustering problems
of the high-dimensional but small-scale tensor data considered in
this work. This is because it is hard to well train a network under
this setting due to insufficient training samples. For example, one
cannot train a network on a single corrupted image to denoise it.

In this work, we develop the first algorithmic solution to the
problem (1) with both theoretical performance guarantees and
practical efficacy. The developed Tensor Low-Rank Representa-
tion (TLRR) method can recover the clean tensor of low-rank

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

structure and infer the clusters of samples. Concretely, based on
the recently developed tensor nuclear norm [13], we propose to
seek the following low-rank representation on the raw tensor data
(see illustration in Fig. 1):

min
Z,E

‖Z‖∗ + λ‖E‖1, s.t. X = A ∗Z + E, (2)

where ‖Z‖∗ and ‖E‖1 respectively denote the tensor nuclear
norm [13] and the tensor `1 norm (see more details in Table 1);
∗ denotes the tensor product defined in Definition 1; each slice
A(:, t, :) in A ∈ Rn1×n4×n3 denotes a representation base and
Z(:, t, :) gives the corresponding representation.

We prove that under mild conditions, TLRR exactly recovers
the clean data L0 via L0 = A ∗ Z? or L0 = X − E?, where
(Z?,E?) is the minimizer to problem (2). This exact recovery re-
sult allows the tubal rank (see Definition 3) of L0 and the amount
of noise to be as high as O (min(n1, n2)/ log(n3 max(n1, n2)))
and O (n1n2n3), respectively. That is, our TLRR can handle the
challenging case where the number of noisy entries is at the same
order as the total entry number of the observed tensor and the
underlying clean data L0 have a high tubal rank. We also prove
when the data are noise-free, the representation coefficient Z? has
a tensor block-diagonal structure formed by nonzero entries (see
Z in Fig. 1). It directly gives the tensor subspace (see Sec. 5.2)
that a specific sample locates in and thus the clustering results over
the samples in the tensor. Accordingly, clustering can benefit from
the exact recovery guarantee, as if L0 can be exactly recovered,
then the learned Z? would be tensor block-diagonal. Compared
with the procedure of first applying data recovery methods, e.g.,
[13], [14], [21], to denoise data and then performing clustering on
the recovered clean data, our TLRR can simultaneously achieve
recovery and clustering of low-rank tensor data with theoretic
guarantees and experimentally validated efficacy.

The dictionary A plays an important role in TLRR. We pro-
pose two simple yet effective dictionary construction approaches
to enable the samples in X to be linearly represented by the
constructed dictionary. When the observed tensor X is not grossly
corrupted, we directly use X itself as the dictionary. This gives
the first variant of TLRR called simple TLRR (S-TLRR). When
corruptions are severe, i.e. sparse noise with large magnitude, we
propose to take the estimated clean data by R-TPCA [13] as the
dictionary A, giving the second method called robust TLRR (R-
TLRR). For both methods, the learned representation Z? indicates
the similarity between samples and can be used for data clustering.
Note, R-TLRR can also work on the data that are not severely
corrupted, though it might be less computationally efficient than
S-TLRR since it needs more efforts to construct the dictionary.

Finally, considering the high cost of directly solving our
problem by standard convex optimization techniques, we propose
to reformulate it into an equivalent one with reduced size, which
can be solved efficiently by the alternating direction method
of multipliers (ADMM) [22]. Accordingly, we significantly re-
duce the computational complexity from O((n1 + n2)n2

2n3) to
O(rAn1n2n3) at each iteration, where the tubal rank rA of
dictionary A is usually much smaller than n2.

To sum up, this paper makes the following contributions.

1) For the first time, we propose a tensor low-rank representa-
tion learning method (TLRR) for effective and robust low-rank
tensor analysis with theoretical guarantees. TLRR can not only
exactly recover the clean low-rank data but also reveal the data

cluster structure. The latter feature is absent from existing low-
rank tensor analysis methods.

2) We develop an efficient algorithm to optimize our problem.
Instead of directly solving the original problem, we manage
to simplify it and reduce the computational complexity from
O((n1 + n2)n2

2n3) to O(rAn1n2n3).
3) We propose to use tensor linear representation for charac-
terizing the linear relations among tensor samples, and theo-
retically show its advantages over vector linear representation
when capturing complex data relations.

4) We provide theoretical performance guarantees for TLRR.
Specifically, TLRR can exactly recover the clean data L0 with
high probability, even in challenging situations where the tubal
rank of L0 and the amount of noise are very high.

5) We also prove that for noise-free data, the minimizer to the
TLRR model is tensor block-diagonal and indicates clustering
structure of tensors straightforwardly, under a reasonable as-
sumption on the tensor subspaces that samples locate in.

Extensive experimental results show that our method outperforms
state-of-the-art subspace methods on the two important visual
tasks, image/video recovery and face clustering.

2 RELATED WORK

As aforementioned, LRR [3], [4] can cluster vector-valued sam-
ples X into corresponding subspaces through seeking low-rank
linear representations Z w.r.t. a given dictionary A:

min
Z
‖Z‖∗ + λ‖E‖1, s.t. X = AZ + E. (3)

Here ‖ · ‖∗ and ‖ · ‖1 respectively denote the matrix nuclear and
`1 norms. But LRR and its variants [8], [9] can only process 2-
way data and cannot effectively handle common multi-way data
(tensor), e.g., videos, image collections and finance data. Besides,
if one reshapes tensor data into a big matrix and then applies
the above matrix-based methods, the performance would severely
drop due to destroying the low-rank structure and losing vital
information [10]–[13]. Thus, their application scope is limited.

Recently, Lu et al. [13] extended R-PCA [21] from the 2-way
matrix to 3-way tensor data and considered the following robust
tensor PCA (R-TPCA) problem:

min
L,E
‖L‖∗ + λ‖E‖1, s.t. X = L + E.

Under certain conditions, R-TPCA can recover the clean data
L0 from noisy observation X . Comparatively, our TLRR can
handle data sampled from a mixture of multiple tensor subspaces
(see Theorem 4) thus has wider applications for realistic data
analysis than R-TPCA. Moreover, TLRR can also cluster tensor
data while R-TPCA cannot. Finally, TLRR provides different and
more general theoretical recovery guarantees, and it degenerates
to R-TPCA when taking an identity tensor as the dictionary A.

Besides the one used in this paper, there are several different
definitions of tensor rank, leading to different low-rank tensor
analysis methods. The CP rank [23], defined as the smallest num-
ber of factors in rank-one tensor decomposition, is generally NP-
hard to compute [24], [25]. The Tucker rank [16] is defined on the
unfolding matrices to depict the rank of a tensor. As minimizing
the rank function is complex due to its combinational nature, Liu et
al. [26] used the sum of the nuclear norm (SNN)

∑k
i=1 ‖Xi‖∗

to approximate the tensor rank in tensor completion problems.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

TABLE 1: Notational convention in this paper.

B A tensor. b A vector.
B A matrix. b A scalar.
I The identity tensor. B∗ The conjugate transpose of B.
Bijk The (i, j, k)-th entry of B. B(i, j, :) The (i, j)-th tube of B.
B(i, :, :) The i-th horizontal slice of B. B̄ The DFT of B.
B(:, i, :) The i-th lateral slice of B. B̄(i) B̄(:, :, i).
B(:, :, i) The i-th frontal slice of B. ‖B‖1 ‖B‖1 =

∑
i,j,k |Bijk|.

B(i) B(i) = B(:, :, i). ‖B‖∞ ‖B‖∞ = maxi,j,k |Bijk|.
B(i) B(i) = B(:, i, :). ‖B‖F ‖B‖F =

√∑
i,j,k |Bijk|2.

rank(B) The rank of matrix B. ‖B‖∗ Sum of singular values of B.
‖B‖1 ‖B‖1 =

∑
i,j |Bij |. ‖B‖F ‖B‖F =

√∑
i,j |Bij |2.

e̊nt e̊nt ∈ Rn×1×n3 whose (t, 1, 1)-th entry is 1 and the rest are 0.
PU (B) The projection onto U : PU (B) = U ∗ U∗ ∗ B.
U0 ∗ S0 ∗ V∗0

∣∣ Skinny t-SVD of clean data L0.
UA ∗ SA ∗ V∗A

∣∣ Skinny t-SVD of clean data A.

Later Huang et al. [14] and Goldfarb et al. [27] adopted SNN to
recover low-rank tensor. But Romera et al. [28] proved that SNN is
not a tight convex relaxation of

∑k
i=1 rank(Xi). Song et al. [29]

extended matrix CUR decomposition [30] to tensor CURT decom-
position and proposed an algorithm to compute a low-rank CURT
approximation to a tensor. But both this method and SNN [14]
cannot learn the relations among samples, in contrast to our TLRR.
Finally, if applying data recovery methods, e.g. R-TPCA [13] and
SNN [14], to clustering, one needs to first apply them to denoise
data and then cluster estimated clean data. Comparatively, our
TLRR simultaneously recovers the clean data and clusters them.
TLRR offers stronger clean data recovery capacity by considering
more complex data structure. TLRR also directly guarantees tensor
block-diagonal structures of its optimal solution, indicating the
clustering structure of tensors straightforwardly (see Sec. 5.2).

Recently, Fu et al. [15] proposed a tensor low-rank representa-
tion and sparse coding based method (TLRRSC) for data cluster-
ing. Specifically, they arranged n samples of feature dimension nk
into a tensor X ∈ Rn1×n2×···×nk , where n = n1n2 · · ·nk−1.
Then they adopted a low-rank Tucker decomposition on the
spatial modes (modes 1 to k−1) to depict the low-rank spatial
relations among samples, and used sparse coding [17] to capture
the linear relations of samples in the feature space (mode k).
However, TLRRSC still needs to reshape 2-way data into vectors.
Zhang et al. [18] proposed a low-rank tensor constrained multi-
view subspace clustering method (LT-MSC). LT-MSC first extracts
several kinds of features to construct the multi-view data, and
then restrains the learned representation tensor constructed by the
representation matrix for each view data to be low Tucker rank.
Differently, our TLRR directly considers the multi-way structure
of the raw tensor data and avoids ad hoc extracting features.
Besides, our TLRR has theoretical guarantees for data recovery
and clustering which are missing in both TLRRSC and LT-MSC.

3 NOTATIONS AND PRELIMINARIES

In this section, we summarize the notations, definitions and pre-
liminaries throughout this paper, which can avoid re-introduction
and help readers locate them.

3.1 Notations

Table 1 summarizes the notations used in this paper. I∈Rn×n×n3

denotes the identity tensor whose first frontal slice is an n × n
identity matrix, and the entries in the other frontal slices are all
zeros. The conjugate transpose B∗ ∈ Cn2×n1×n3 of tensor B ∈
Cn1×n2×n3 is obtained by conjugate transposing each frontal slice

of B and then reversing the order of transposed frontal slices 2
through n3. The inner product of two tensors B ∈ Rn1×n2×n3

and C ∈ Rn1×n2×n3 is defined as 〈B,C〉=
∑n3

i=1〈B(i),C(i)〉.
Now we introduce the Discrete Fourier Transformation (DFT)

on a tensor used in Sec. 3.2. Let B̄∈Cn1×n2×n3 be the DFT of B
∈ Rn1×n2×n3 along the 3rd dimension. Define the DFT matrix:

Fn3 = [f1, · · · ,fi, · · · ,fn3] ∈ Rn3×n3 , (4)

where fi = [ω0×(i−1);ω1×(i−1); · · · ;ω(n3−1)×(i−1)] ∈ Rn3

with ω = e−(2π
√
−1/n3). Then we have B̄(i, j, :)=Fn3

B(i, j, :).
Indeed, we can compute B̄ directly by the Matlab command
B̄ = fft(B, [], 3) and use the inverse DFT to obtain B =
ifft(B̄, [], 3). Then the tensor spectral norm of B is defined
as ‖B‖ = ‖B̄‖ [13]. For brevity, we define B̄ ∈ Cn1n3×n2n3 as

B̄=bdiag(B̄)=


B̄

(1)

B̄
(2)

. . .
B̄

(n3)

∈Cn1n3×n2n3 , (5)

where bdiag(·) unfolds the tensor B̄ to a block-diagonal matrix
B̄. Then we define the block circulant matrix bcirc(B) of B as

bcirc(B) =


B(1) B(n3) · · · B(2)

B(2) B(1) · · · B(3)

...
...

. . .
...

B(n3) B(n3−1) · · · B(1)

 ∈ Rn1n3×n2n3 .

Then we define the operator unfold and its inverse operator
fold as

unfold(B)=


B(1)

B(2)

...
B(n3)

∈Rn1n3×n2 , fold(unfold(B)) = B.

Based on the definitions of B̄, bcirc(B) and unfold(B), we
can define the tensor rank and nuclear norm as introduced below.

3.2 Preliminaries
We start with explaining t-product for tensor product computation
and then give necessary definitions for developing TLRR.

Definition 1. (t-product) [31] The t-product between two tensors
B ∈ Rn1×n2×n3 and C ∈ Rn2×n4×n3 is defined as B ∗ C =
fold(bcirc(B) · unfold(C)) ∈ Rn1×n4×n3 .

Indeed, t-product is equivalent to the matrix multiplication in
the Fourier domain, i.e. F = B ∗ C and F̄ = B̄C̄ are equiva-
lent [31]. A tensor P ∈ Rn×n×n3 is orthogonal if P∗ ∗ P =
P ∗P∗ = I holds. A tensor is f-diagonal if its each frontal slice
is diagonal. Then we can define t-SVD for tensor SVD as follows.

Definition 2. (t-SVD and skinny t-SVD) [31]–[33] For any B ∈
Rn1×n2×n3 , it can be factorized by t-SVD as B = U ∗ S ∗ V∗,
where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal,
and S ∈ Rn1×n2×n3 is f-diagonal. Then the skinny t-SVD of B
is B = Us ∗ Ss ∗ V∗s , where Us = U(:, 1 : r, :), Ss = S(1 :
r, 1 : r, :), and Vs = V(:, 1 : r, :) in which r denotes the tensor
tubal rank of B (see Definition 3).

Based on t-SVD, we can describe the low-rank structure of a
tensor by defining following two tensor ranks.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

(i.e.)

𝑛1 𝑛3

𝑛2

sequeeze

operation

1

2

3

4

5

6

7

8

9

10

11

12

1

5

9

2

6

10

3

7

4

11

8

12

(a)

vec operation

ivec operation

1

2

3

4

5

6

7

8

9

10

11

12

(b)

(Sample direction)

Fig. 2: Illustration of the vec, ivec and squeeze operations.

Definition 3. (Tensor average and tubal rank) [10], [13] For any
B ∈ Rn1×n2×n3 , let r = (rank(B̄

(1)
); · · · ; rank(B̄

(n3)
)). The

tensor average rank of B is defined as

ranka(B) =
1

n3

∑n3

i=1
ri =

1

n3
rank(B̄).

The tensor tubal rank rankt(B) is defined as the number of
nonzero singular tubes of S, i.e.,

rankt(B) = #{i : S(i, i, :) 6= 0} = max (r1, · · · , rn3
),

where S is from the t-SVD of B = U ∗ S ∗ V∗.

To pursue a low-rank tensor, one can minimize the tensor
rank defined as above which however is NP-hard. To alleviate
the optimization difficulty, we instead minimize the tensor nuclear
norm ‖B‖∗ defined below, which is a convex envelop of the tensor
average rank within the unit ball of the tensor spectral norm [13].

Definition 4. (Tensor nuclear norm) [13], [34], [35] The tensor
nuclear norm ‖B‖∗ of a tensor B ∈ Rn1×n2×n3 is defined as the
average of the nuclear norm of all the frontal slices of B̄, i.e.,

‖B‖∗ =
1

n3

∑n3

i=1
‖B̄(i)‖∗ =

1

n3
‖B̄‖∗,

which is the convex envelop of the tensor average rank within the
unit ball of the tensor spectral norm.

Next, we introduce the pseudo-inverse of a tensor.

Definition 5. (Tensor pseudo-inverse) For an arbitrary tensor
B ∈ Rn1×n2×n3 , its pseudo-inverse is defined as a tensor B† ∈
Rn2×n1×n3 which satisfies (a) B∗B†∗B = B, (b) B†∗B∗B† =
B†, (c) B ∗B† =

(
B ∗B†

)∗
, (d) B† ∗B =

(
B† ∗B

)∗
.

The pseudo-inverse of a tensor B can be computed frontal-
slice-wisely after DFT. See more details in Sec. 4.1 in supplemen-
tary. Finally, we introduce a lemma that is essential for developing
TLRR method and following theoretical analysis.

Lemma 1. [31] Suppose B ∈ Rn1×n2×n3 , C ∈ Rn2×n4×n3 are
two arbitrary tensors. Let F = B ∗ C. Then, we have
(1) ‖B‖2F = 1

n3
‖B̄‖2F and 〈B,C〉 = 1

n3
〈B̄, C̄〉;

(2) F = B ∗ C and F̄ = B̄C̄ are equivalent to each other.

Lemma 1 is induced by tensor product definition and the
orthogonality of Fn3/

√
n3, i.e. F ∗n3

Fn3
= Fn3

F ∗n3
= n3In3

.

4 TENSOR LINEAR REPRESENTATION

In this work, we propose a method for pursuing tensor low-rank
linear representation. Before introducing the proposed method,
here we explain the intuition behind the tensor linear represen-
tation X=A∗Z , which generalizes the data linear representation
from the vector space to the tensor space. We introduce two

R
ec

on
st

ru
ct

io
n

E
rr

or

1.4e−06

LRR

4.8e−07

TLRR LRR TLRR

(a) Results of LRR and TLRR on the data with vector linear relations.

R
ec

on
st

ru
ct

io
n

E
rr

or

5.0e+00

LRR
8.0e−07
TLRR LRR TLRR

(b) Results of LRR and TLRR on the data with tensor linear relations.

Fig. 3: Comparison of vector linear representation and tensor
linear representation. (a) reports the reconstruction errors of LRR
and TLRR which respectively are based on vector and tenslr linear
representations, the learnt block-diagonal structures by LRR and
TLRR, when the testing data have vector linear relations. (b)
reports the results under the same metrics on the data with tensor
linear relations. Best viewed in color pdf file.

operators: vec(·) and ivec(·). Let X (t) be the t-th lateral slice
X (:, t, :) (see Table 1). As shown in Fig. 2, vec vectorizes each
sample X (t) in X , while ivec is its inverse operation.

For any sample X (t), if its vectorization x(t) = vec(X (t))

can be linearly represented by the bases in A ∈ Rn1n3×p′ :

x(t) = Az(t), ∀t = 1, · · · , n2, (6)

then one can always find two tensors A and Z such that tensor
linear representation X = A ∗Z holds, as stated in Theorem 2.

Theorem 2. If Eqn. (6) holds, then there exist two tensors A ∈
Rn1×p′×n3 and Z ∈ Cp

′×n2×n3 such that

X (t) = ivec(x(t)) = A ∗Z(t), (∀t = 1, · · · , n2), (7)

where A can be found through A(t) = ivec(A(:, t)) and Z
can be computed as Z(t) = ifft(Z̄(t), [], 3) in which Z̄(t)(:
, t, j) = z(t) (j = 1, · · · , n3). However, if there exists a Z(t)

such that Eqn. (7) holds, Eqn. (6) may not hold.

The proof of Theorem 2 can be found in Sec. 5 in sup-
plementary material. Theorem 2 implies that if vectorized data
samples can be linearly represented in the vector space, the tensor
linear representation (7) for original tensor data also holds. One
appealing advantage of tensor linear representation is that it gets
rid of vectorizing tensor data for describing and analyzing their
relationship. Thus using tensor linear representation effectively
avoids destroying the multi-way structure and losing information
[10], [11], [13]. Moreover, Theorem 2 also implies that the tensor
linear representation can capture more complex data relations that
cannot be depicted by vector linear representation. In this sense,
tensor linear representation is more general and advantageous over
vector linear representation for tensor data analysis.

Example 1. We give an example to demonstrate the above
mentioned advantages of the tensor linear representation over
vector linear representation. We first investigate whether tensor
linear representation can well learn the linear relations and the
vector subspace structure in the data with vector linear rela-
tions. Toward this goal, we generate a testing data matrix X
= [X1,X2, · · · ,Xk] with Xi = AiZi ∈ Rn1n3×s where

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Ai ∈ Rn1n3×p′ is a random orthogonal matrix and Zi ∈ Rp
′×s is

an i.i.d.N (0, 1) matrix. In this way, the samples in X obey vector
linear representation, and samples in Xi are drawn from the i-th
vector subspace spanned by Ai. Then we solve the LRR model (3)
to obtain its minimizer (Z∗,E∗) and report the reconstruction
error ‖AZ∗ − X‖F in Fig. 3 (a) to measure whether vector
linear representation can learn the linear relations among data
X . Next, we respectively use X and A to construct their tensor
versions X ∈ Rn1×ks×n3 and A ∈ Rn1×kp′×n3 . We also solve
the TLRR model (2) to obtain its optimizer (Z∗,E∗) and report
the reconstruction error ‖A ∗ Z∗ − X‖F in Fig. 3 (a). In the
experiments, we set n1 = n3 = 100, p′ = s = 10 and
k = 5. By comparison, we can observe that the reconstruction
error of TLRR is as small as that of LRR, demonstrating the
representation capacity of tensor linear representation to the data
with vector linear relations. Moreover, in Fig. 3 (a) we also
display the sample similarity matrices Z̃ = 1

2 (|Z∗| + |Z∗|T)

in LRR and Ẑ = 1
2n3

∑n3

i=1(|Z∗(:, :, i)| + |Z∗(:, :, i)|T) in
TLRR, where each Z∗(:, :, i) learnt by TLRR captures the sample
relations (see details in Sec. 5.1). From Fig. 3 (a), one can
observe that tensor linear representation is capable of capturing
the vector subspace structure in X and even learns better block-
diagonal structure than LRR. On the contrary, we investigate the
learning capacity of vector linear representation to the data with
tensor linear relations. We generate X = [X 1, · · · ,X k] with
X i = Ai ∗Zi, where Ai ∈ Rn1×p′×n3 is a random orthogonal
tensor and Zi ∈ Rp

′×s×n3 are from i.i.d. N (0, 1). Accordingly,
the samples in X have tensor linear relations and samples in
X i lie in the i-th tensor subspace (see Definition 6). Then by
performing TLRR on X , the learnt similarity matrix Ẑ has block-
diagonal structure as shown in Fig. 3 (b) which indicates the tensor
subspace structures. Please refer to Sec. 5.2. Then, we vectorize
X and A to solve LRR and report its reconstruction error and the
learnt Z̃ in Fig. 3 (b). Comparatively, vector linear representation
has much larger reconstruction error than that of TLRR, which
means it cannot learn the linear relationship of samples with tensor
linear relations. Furthermore, the learnt structure of Ẑ in LRR also
does not reveal the tensor subspace structure in X . So these results
well demonstrate the superiority of tensor linear representation on
complex tensor data over vector linear representation.

5 TLRR FOR DATA CLUSTERING

In this section, we elaborate how TLRR formulated in Eqn. (2)
can be applied for tensor data clustering. Specifically, we first
introduce the TLRR based clustering algorithm in Sec. 5.1, and
then theoretically analyze its clustering performance in Sec. 5.2.
Finally, Sec. 5.3 interprets the TLRR based clustering algorithm
from multi-view aspect, which can help understand the advantages
of TLRR over matrix LRR [1], [4].

5.1 Algorithm for Clustering

Here we elaborate the TLRR based clustering algorithm which is
used for clustering tensor data in this work. For clustering, here
we take the data X or the recovered datum by other methods,
e.g. R-TPCA [13], as the dictionary A. In this case, each of the
frontal slices Z

(i)
? ∈ Rn2×n2 (i = 1, · · · , n3) of the learned

representation Z? is a similarity matrix of samples. To apply the

Algorithm 1 Data Clustering

Input: data X , dictionary A, and number k of clusters.
1. Obtain the minimizer Z? to problem (2).
2. Construct a similarity matrix Ẑ by (8).
3. Perform Ncut on Ẑ to cluster the samples into k clusters.
Output: clustering results.

existing clustering tools, such as Ncut [36], we combine all Z(i)
?

into one affinity matrix Ẑ:

Ẑ =
1

2n3

∑n3

i=1

(
|Z(i)
? |+ |(Z(i)

?)∗|
)
. (8)

Now we give our clustering algorithm below.
In this work, we use Algorithm 1 to cluster tensor data and

investigate its practical performance in Sec. 9.1. In the following
subsection, we theoretically analyze its clustering performance.

5.2 Tensor Block-diagonal Property

Here we analyze the performance of Algorithm 1 by analyzing
the minimizer’s structure of the TLRR model. We start with a
simpler case where the tensor data are noise-free and the TLRR
problem (2) degenerates to

min
Z
‖Z‖∗, s.t. X = A ∗Z. (9)

If sparse corruptions are present, one can solve the original
problem (2). Now we analyze the structure of the minimizer to
noiseless TLRR (9) for data clustering.

To analyze tensor data, here we develop certain new concepts
and tools in tensor space which are consistent with those in the
vector space. A tensor space is a set of tensors that is closed under
finite tensor addition and scalar multiplication. Here the tensor
space specially refers to the set S = {∀S ∈ Rn1×1×n3}. A set
of tensors {D(1), · · · ,D(p)} ⊆ S, where D(t) is the t-th lateral
slice of D ∈ Rn1×p×n3 , is said to be linearly independent if there
is not a nonzero C ∈ Rp×1×n3 satisfying D ∗ C = 0.

Definition 6. (Tensor subspace) Given a set {D(1), · · · ,
D(p)} ⊆ S in which the elements D(i) are linearly independent,
the set K = {Y |Y = D ∗C, ∀C ∈ Rp×1×n3} is called a tensor
subspace of dimension dim(K) = p. Here D(1), · · · ,D(p) are
the basis spanning K.

The defined tensor subspace includes the tensor 0 and is closed
under tensor addition and scalar multiplication. Also when n3 =
1, the tensor subspace reduces to the subspace defined on vectors.
Next, we define the tensor direct sum, which also accords with the
direct sum defined on the vector subspace when n3 = 1.

Definition 7. (Tensor direct sum) K =
⊕k

j=1 Kj is called the
direct sum of tensor subspaces {K1, · · · ,Kk}, if for any F ∈
Rn1×1×n3 in K, there is a unique F j ∈ Rn1×1×n3 in Kj for
1 ≤ j ≤ k such that F =

∑k
j=1 F i.

If the tensor subspaces {K1, · · · ,Kk} obey the condition∑k
j=1 Kj =

⊕k
j=1Kj , they are said to be independent. Now we

present our main results in Theorem 3 which guarantee the tensor
block-diagonal structure of the learnt representation and indicate
the clustering structure of tensors.

Theorem 3. Suppose X = [X 1, · · · ,X k], and the samples
(X j(:, i, :)) in X j ∈ Rn1×mj×n3 are drawn from the j-th tensor

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

subspace Kj whose pj basis composes Aj ∈ Rn1×pj×n3 . Then if
{K1, · · · ,Kk} are independent, the minimizer Z? to problem (9)
is tensor block-diagonal (see “Z” in Fig. 1). Namely, each frontal
slice Z

(i)
? of Z? has the following block-diagonal structure:

Z(i)
? =


(Z

(i)
?)1 0 · · · 0

0 (Z
(i)
?)2 · · · 0

...
...

. . .
...

0 0 · · · (Z
(i)
?)k

∈R(
∑

jpj)×(
∑

jmj),

where (Z
(i)
?)j ∈ Rpj×mj is a coefficient matrix. Then the DFT

result Z̄? of Z? has the same block-diagonal structure as Z?.

We defer the proof of Theorem 3 to Sec. 6 in supplementary.
The subspace independence assumption here is not strict. Indeed,
its vector version is a common assumption in sparse and low-rank
data analysis [1]–[3]. Fig. 8 in Sec. 9.1 displays the block-diagonal
structure learnt by TLRR on real face data, verifying the validity
of the tensor subspace assumption and Theorem 3 as well.

Theorem 3 is useful for clustering, since the block-diagonal
structure of Z? directly indicates the tensor subspace membership
of a specific sample, according to which one can easily obtain the
clusters. Specifically, for the t-th sample X (t), we have

X (t) = A∗Z?(t) =
∑k

j=1
Aj∗Zj

?(t), ∀t = 1, · · · , n2, (10)

where Zj
?(t) = Z?(1 +

∑j−1
i=1 pi :

∑j
i=1 pi, t, :). By Theorem 3,

if X (t) is drawn from the s-th subspace Ks, Zs
?(t) will have

nonzero entries while Zj
?(t) (j 6= s) will be 0. Then according to

the nonzero entries in Z?(t), we can cluster X (t) accurately.
If we take the raw datum X itself as the dictionary, the learned

representation Z? is also block-diagonal, as the samples are from
independent tensor subspaces. Besides, by replacing A with X
in Eqn. (10), we have X (t) =

∑n2

j=1 X (j) ∗ Z?(j, t, :). So the
coefficient Z?(j, t, :) depicts the similarity between samples X (t)

and X (j). To perform clustering (e.g. using Ncut) on the learnt
representation Z?, following Eqn. (8) we combine the two vectors
Z?(t, j, :) and Z?(j, t, :) into a value Ẑ(t, j) = 1

n3

∑n3

i=1

(|Z?(t, j, i)| + |Z?(j, t, i)|), which measures the similarity be-
tween the samples X (t) and X (j). Also, if X (t) and X (j) are
drawn from different tensor subspaces, Ẑ(t, j) would be zero.
Then, clustering can be performed on the similarity matrix Ẑ.

For corrupted data, our Theorem 4 in Sec. 6.2 shows that
TLRR can exactly recover the clean low-rank data under mild
conditions. Then if the conditions in Theorem 3 are satisfied, the
minimizer Z? will be tensor block-diagonal. We will discuss this
later in more details in Sec. 6.2.

5.3 Multi-view Interpretation on TLRR

To better understand TLRR, we give another explanation from the
multi-view aspect. By tensor nuclear norm definition ‖Z‖∗ =
1
n3
‖Z̄‖∗ and the block-diagonal structure of X̄ , Ā and Z̄ (see

their definitions in (5)), we rewrite (9) into its equivalent form:

min
Z̄(i)
‖Z̄(i)‖∗, s.t. X̄(i) = Ā(i)Z̄(i), (i = 1, · · · , n3). (11)

On the other hand, when performing DFT on X , the t-th column
of X̄(i) is from the t-th sample X (i). This is because we have

X̄(i) =
[
M1fi,M

2fi, · · · ,M tfi, · · · ,Mpfi
]
.

84.1

Z(:,:,1)

85.6

Z(:,:,2)

76.1

Z(:,:,3)

76.1

...

79.6

Z(:,:,36)

TLRR

(a) (b)
Fig. 4: Comparison of clustering accuracies of LRR and TLRR on
the FRGC 2.0 dataset [37].

Here fi is the i-th column of the DFT matrix Fn3 defined in (4),
and M t = squeeze(X (t)) ∈ Rn1×n3 where the operation
squeeze transforms the t-th sample X (t) into a matrix (see
Fig. 2). So in this sense, X̄(i) can be viewed as the new features of
samples in X under the i-th Fourier basis fi. Similarly, Ā(i) can
be viewed as a new dictionary under the Fourier basis fi. Thus,
from a multi-view aspect, the frontal slice Z̄(i) (i = 1, · · · , n3)
learnt by model (11) can be regarded as n3 different representation
matrices under n3 different views and may better depict the rela-
tions among samples. Thus, the t-th lateral Z̄(t) is the represen-
tation tensor of the t-th sample X (t). Conducting inverse DFT on
Z̄(t) gives Z(t) = 1

n3
F ∗n3

squeeze(Z̄(t)). This combines all the
representation information under n3 different views. Such a mech-
anism also makes the advantage of TLRR stand out, as compared
with matrix LRR [1], [4] which only learns the representation
under a single view, TLRR aims at seeking n3 representations
under n3 different views and may better reveal the relationship
among samples. This advantage is actually testified by Example 1
in Sec. 4 : TLRR can learn more accurate subspace structures in
the simulation data with vector or tensor linear relations, and thus
it can better capture sample relations. Here we further demonstrate
the advantage of TLRR on a realistic face dataset, namely FRGC
2.0 [37]. It consists of 60 classes and each class has 20 images of
size 32× 36. Here we use the raw data itself as the dictionary and
then apply LRR and TLRR. In LRR we need to vectorize each
image. See more experimental details in Sec. 9.1. From Fig. 4
(a), one can observe that for clustering accuracy, TLRR makes
9.6% improvement over LRR. This is because compared with
LRR considering data from one single view, TLRR considers the
data under n3 (= 36) different views and seeks n3 representations
which can better capture sample relations. This can be illustrated
by observing Fig. 4 (a) and (b): compared with each single
similarity matrix Z(:, :, i) in Fig. 4 (b), the uniform similarity
matrix Ẑ = 1

2n3

∑n3

i=1(|Z(:, :, i)|+|Z(:, :, i)|T) in Fig. 4 (a) can
achieve better clustering results, as the representations obtained
from different views could provide complementary information
and boost the clustering performance.

6 TLRR FOR EXACT DATA RECOVERY

Here we provide the theoretical performance guarantees for TLRR
on data recovery. We prove that under mild conditions TLRR in
(2) can exactly recover the intrinsic low-rank data L0 lying in
multiple tensor subspaces, even in presence of gross noise E0.

6.1 Incoherence Condition for TLRR
In this subsection, we introduce the incoherence condition of
TLRR for exactly data recovery. Intuitively, exactly separating X
into the low-rank term L0 plus the sparse term E0 requires L0 to
be not too sparse. Similar consideration is made for the matrix case

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

in [3], [21]. To formally characterize this intuition, we present the
incoherence condition for low-rank tensors. Let r = rankt(L0).
We define row incoherence parameter µ1, column incoherence
parameter µ2, and total incoherence parameter µ3 as follows.

µ1(L0) =
n2n3

r
max

j=1,··· ,n2

‖V∗0 ∗ e̊
n2
j ‖

2
F ,

µ2(L0) =
n1n3

r
max

i=1,··· ,n1

‖U∗0 ∗ e̊
n1
i ‖

2
F ,

µ3(L0) =
n1n2n

2
3

r
(‖U0 ∗ V∗0‖∞)

2
,

where the standard basis e̊n2
j and e̊n1

i are defined in Table 1. A
small value of µ(L0) = max(µ1(L0), µ2(L0), µ3(L0)) implies
the low-rank term L0 is not sparse. Such a condition is also critical
for other tensor analysis methods, e.g., R-TPCA [13].

As TLRR involves an extra dictionary A, we need to develop
a new necessary incoherence condition that cannot be straight-
forwardly generalized from the matrix case or the one used in
R-TPCA [13]. Let rankt(A) = rA. Then we define a new row
incoherence parameter related to A:

µA
1 (L0)=µ1(L0) max

i=1,··· ,n1

‖U∗A ∗ e̊
n1
i ‖

2
F=

rA
n1n3

µ1(L0)µ2(A).

The incoherence condition of TLRR for exact recovery only
requires max(µ2(L0), µA

1 (L0)) to be sufficiently small and does
not rely on µ3(L0). So it is a looser condition compared with the
exact recovery condition in R-TPCA [13].

6.2 Exact Recovery Performance Guarantee
We summarize the exact recovery results of TLRR in Theorem 4.
Let n(1) = max(n1, n2) and n(2) = min(n1, n2). Recall PU (·)
is a projection operator defined in Table 1.

Theorem 4. Assume the support set Ω of E0 is uniformly dis-
tributed, PUA(U0) = U0, and A obeys that the ranks of Ā(i)

(i=1, · · ·, n3) are equal. Let µA = max(µ2(L0), µA
1 (L0)). If

rankt(L0) ≤
ρrn(2)

µA log(n(1)n3)
and |Ω| ≤ ρsn1n2n3,

where ρr and ρs are constants, then with probability at least 1−
n−10

(1) , (Z?,E?), where Z? = A† ∗ L0 and E? = E0, is the
unique optimal solution to problem (2) with λ = 1/

√
n(1)n3.

Theorem 4 shows that TLRR can exactly recover the low-rank
clean data L0 even when the amount of noise is at the same order
as the entry number of the observed tensor and the tubal rank is as
high as O(n(2)/ log(n(1)n3)). Also the exact recovery does not
require previously knowing the location of noise (the corrupted
elements). This is very useful for data denoising in practice where
noise is difficult to detect. This theorem also implies that applying
TLRR to recover clean data can also benefit subsequent data
clustering: if the clean data L0 is exactly recovered, by Theorem 3
in Sec. 5.2 the optimal solution Z? would be tensor block-
diagonal. Thus getting data clusters becomes straightforward.

The condition PUA(U0) = U0 in Theorem 4 is necessary
and reasonable—each authentic sample in L0 that is drawn from
a particular subspace should be linearly representable by the bases
in A. The condition on the ranks of Ā(i) (i = 1, · · · , n3) is
indispensable for exact recovery, as the equality L0 = A ∗Z? =
A ∗A† ∗ L0 implies A ∗A† = I , requiring that the ranks of
Ā(i) (i = 1, · · · , n3) are equal. This condition is also necessary
for R-TPCA, as R-TPCA can be viewed as a special case of TLRR

1 5 10 20 50 100
10

15

20

25

30

µ 1(L
0)

#Subspace
1 5 10 20 50 100

10

15

20

25

30

µ 2(L
0)

#Subspace
(a) (b)

Fig. 5: Illustration of effects of the tensor subspace number k
on µ1(L0) and µ2(L0). We produce a random tensor L0 ∈
R1000×1000×10 with rankt(L0) = 100. We increase the subspace
number k and set the sample number as 100/k per subspace (see
case (a) in Sec. 9.2.1 for details of producing testing data).

by choosing the identity tensor I as the dictionary, naturally
satisfying the condition. Also if A = I , Theorem 4 still holds and
it gives guarantees on exact recovery for R-TPCA1. Theorem 4 is
also applicable when n3 = 1. Thus performance guarantees for
matrix LRR [3], [4] can be derived as a special case of our results.

The proof of Theorem 4 is given in Sec. 7 of supplementary.
It is worthy mentioning that the proof is carefully and elaborately
conducted based on the interaction between both the original and
Fourier domains. This can be intuitively interpreted from the fact
that for the TLRR model (2), its equivalent form, namely

min
Z,E

1

n3

(
‖Z̄‖∗+λ‖bcirc(E)‖1

)
, s.t. X = A∗Z+E, (12)

is a mixed model, as the low-rank term is performed on the
Fourier domain while the sparse regularization is in the original
domain. Interpreting the tensor nuclear norm of Z as a matrix
nuclear norm of Z̄ in the Fourier domain allows us to use some
properties of matrix nuclear norm in the proof. But the analysis
of the sparse term is still in the original domain, as the `1-norm
has no equivalent form in the Fourier domain. So this requires
us to finish the proof based on the interaction between both
domains. Compared with matrix LRR [3], [4], our proof is more
challenging, as 1) our proof stretches across two domains while the
proof of LRR only involves the original domain; 2) the structures
of Z̄ and bcirc(E) are more complicated than those in LRR (3),
thus making the proof of TLRR harder than those in LRR. For
instance, our proofs (e.g. in Lemma 9 of supplementary) require to
upper bound the norms of random tensors, which involves block
circulant matrices and the Fourier transformation and needs to
carefully consider their properties and structures. Note, these two
factors also make the clustering performance analysis of TLRR
in Sec. 5 and the optimization algorithm design and analysis in
Sec. 7 more challenging than LRR.

6.3 Comparison between TLRR and R-TPCA

Since both TLRR and R-TPCA [13] are based on the recently
proposed tensor tubal rank and t-SVD [31] and can be used for
data recovery, here we compare their recovery ability by analyzing
their incoherence parameters.

We find with the increasing number of tensor subspaces in
data, µ1(L0) increases notably while µ2(L0) is nearly constant.
This observation coincides with the matrix case in [3]. We explain

1. We derive the guarantees by adopting the least square proof framework
instead of Golfing proof scheme [38] in R-TPCA due to the different dual
certificates of TLRR and R-TPCA.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

this below. Assume L0 obeys the assumptions on X in Theorem 3.
Then V0 is tensor block-diagonal:

V0 =


V1 0 · · · 0
0 V2 · · · 0
...

...
. . .

...
0 0 · · · Vk

 ,
where Vi (i = 1, · · · , k) is of size pi × mi × n3. When the
tensor subspace number k is large, V0 would be very sparse and
‖V∗0 ∗ e̊

n2
j ‖2F = ‖V0(:, j, :)‖2F would be close to 1, leading to a

large incoherence parameter µ1(L0) ≈ n2n3/r. In contrast, U0

is generally not block-diagonal and is indeed not sparse. Actually,
when the rank of L0 is fixed, U0 is invariant to the tensor subspace
number. This is because U0 just needs to span the tensor subspaces
that samples lie in and only depends on the tensor rank of L0. So
µ2(L0) is nearly constant. This observation is also verified by
empirical studies shown in Fig. 5. It also explains why T-RPCA
is less successful when dealing with more tensor subspaces. For
exact recovery, R-TPCA requires

rankt(L0) ≤
ρ′rn(2)

µ(L0)(log(n(1)n3))2
.

Here ρ′r is a constant, but µ(L0) (≥ µ1(L0)) is usually large.
Conversely, with the help of A, the incoherence parameter

µA
1 (L0) can be small. Though µ1(L0) may become large when

the tensor subspace number increases, µ2(A) is constant and
rA/(n1n3) remains small. Thus, Theorem 4 guarantees stronger
data recovery power of TLRR over R-TPCA. Besides, R-TPCA
requires an extra condition: µ3(L0) should be sufficiently small.
Such a restrictive condition is not necessary for TLRR. Finally,
TLRR can not only exactly recover the clean data L0 but also learn
the relationship among samples in L0, which benefit clustering
and also other tasks, e.g. classification and metric learning.

7 OPTIMIZATION TECHNIQUE

Here we propose an efficient algorithm to solve (2), and then
analyze its convergence behavior and computational complexity.

7.1 Optimization Algorithms
ADMM [22] is a straightforward optimization approach to solve
problem (2). But when the sample number n2 is large, directly ap-
plying ADMM is highly computationally expensive, as it requires
to compute n3 SVD over n2 × n2 matrices at each iteration. To
reduce the computational cost, we provide a new and equivalent
reformulation for (2). Assume UA∗SA∗V∗A is the skinny t-SVD
of A (ref. Definition 2). Then, we respectively replace A and Z
in (2) with D = UA ∗ SA ∈ Rn1×rA×n3 and VA ∗Z ′, where
rA = rankt(A) and Z ′ ∈ RrA×n2×n3 is a variable needed to be
optimized. This gives the following equivalent formulation:

min
Z′,E

‖Z ′‖∗ + λ‖E‖1, s.t. X = D ∗Z ′ + E. (13)

Using such reformulation, we only need to compute SVD for
matrices with a significantly reduced size of rA×n2 at each
iteration. So we first solve (13) to obtain its minimizer (Z ′?,E?)
and then recover the minimizer (VA ∗ Z ′?,E?) to problem (2).
The optimality of such a solution is guaranteed by Theorem 5.

Theorem 5. Assume the pair (Z ′?,E?) is an optimal solution to
problem (13). Then, the pair (VA ∗ Z ′?,E?) is the minimizer to
problem (2).

Algorithm 2 Tensor LRR (TLRR)

Input: Input X ∈ Rn1×n2×n3 , dictionary A ∈ Rn1×n4×n3 .
Initialize: D=UA∗SA with skinny t-SVD UA∗SA∗V∗A of
A, J 0=Z ′0=Y1

0=0, E0=Y2
0=0, λ=1/

√
n3 max(n1, n2),

γ=1.1, β0=1e− 5, βmax=1e+ 8, ε=1e− 8, and k=0.
While not converged do
1. Fix Z ′k and Ek. Update J k+1 by solving

Jk+1= argmin
J

∥∥∥Z ′k+
Y1

k

βk
−J

∥∥∥2

F
+
∥∥∥X−Ek+

Y2
k

βk
−D∗J

∥∥∥2

F
.

(15)
2. Fix J k+1. Update the block (Z ′,E) by solving

(Z ′k+1,Ek+1)= argmin
Z′,E

‖Z ′‖∗+λ‖E‖1+
βk
2

∥∥∥Z ′−Jk+1+
Y1

k

βk

∥∥∥2

F

+
βk
2

∥∥∥E−X+D ∗J k+1−
Y2

k

βk

∥∥∥2

F
. (16)

3. Update Lagrange multipliers with Gk+1=D∗J k+1+Ek+1:

Y1
k+1=Y1

k+βk
(
Z ′k+1−J k+1

)
, Y2

k+1=Y2
k+βk (X−Gk+1) .

4. βk+1 = min(γβk, βmax).
5. Check the convergence conditions:

max
(
‖J k+1−J k‖∞, ‖Z ′k+1−Z ′k‖∞, ‖Ek+1−Ek‖∞

)
≤ε,

max
(
‖J k+1−Z ′k+1‖∞, ‖X−D ∗J k+1−Ek+1‖∞

)
≤ε.

6. k = k + 1.
end while
Output: Z? = VA ∗Z ′k+1, E?=Ek+1, L?=X−E?.

The proof of Theorem 5 can be found in Sec. 8 of supplemen-
tary. To apply ADMM on the size-reduced problem (13), we first
introduce one auxiliary variables J to decouple the variables from
the objective and the constraint. Then one can update variables
more easily. Problem (13) can be rewritten as

min
J ,Z′,E

‖Z ′‖∗+λ‖E‖1, s.t. Z ′ = J ,X = D ∗J +E. (14)

To tackle the hard constraints, we resort to augmented Lagrangian
multiplier method and solve the following problem instead:

H(J ,Z ′,E,Y1,Y2)=‖Z ′‖∗+λ‖E‖1+
〈
Y1,Z ′−J

〉
+

β

2

∥∥Z ′−J ∥∥2

F
+
〈
Y2,X−D∗J −E

〉
+
β

2
‖X−D∗J −E‖2F ,

where Y1 and Y2 are the Lagrange multipliers introduced for the
two constraints respectively, and β is an auto-adjusted penalty
parameter. Then we solve the problem through alternately up-
dating two blocks, namely J and (Z ′,E), in each iteration
to minimize H(J ,Z ′,E,Y1,Y2) with other variables fixed.
Algorithm 2 summarizes the whole optimization procedure. Both
problems (15) for updating J k+1 and (16) for updating the block
(Z ′k+1,Ek+1) have closed form solutions. Note, problem (16) can
be split into subproblems for Z ′ and E as these two variables are
independent in this problem. Accordingly, we update the variable
Z ′ and E independently. See detailed optimization of J k+1 and
(Z ′k+1,Ek+1) in Sec. 3 in supplementary.

7.2 Convergence and Complexity Analysis

Since problem (14) is a convex problem which involves two blocks
of variables, J and (Z ′,E), and only includes linear constraints,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Algorithm 3 Dictionary construction

Input: Tensor data X ∈Rn1×n2×n3 .
1. Utilize R-TPCA to estimate L′ with regularization parameter
λ=1/

√
n3 max(n1, n2).

2. Estimate the tubal rank rL′ of L′.
3. Truncate L′ to obtain an approximation tensor L′′ which
obeys rankt(L′′) ≤ rL′ :

L′′ = argmin
L

‖L−L′‖2F , s.t. rankt(L′′) ≤ rL′ . (17)

Output: dictionary A = L′′.

convergence analysis results in [22] guarantee the solution of
Algorithm 2 would converge to the global optimum.

At each iteration, when updating J k+1, computing its closed
form solution to problem (15) costs O (rA(n1 + n2)n3 log(n3)
+rAn1n2n3). The major cost of computing the closed form
solution (Z ′k+1,Ek+1) to problem (22) includes n3 SVD on
rA × n2 matrices of cost O(r2

An2n3) and tensor product of
cost O (rAn1n2n3+ rA(n1 + n2)n3 log(n3)). So the cost of
Algorithm 2 is O (rAn1n2n3 +rA(n1 + n2)n3 log(n3)) for
each iteration. Compared with directly solving problem (2) whose
iteration cost is O

(
(n1 + n2)n2

2n3

)
, the reformulation (13) re-

duces the cost significantly. Compared with R-TPCA [13] which
is a counterpart of TLRR but without a dictionary, the convergence
speed of TLRR is usually slower, since 1) TLRR has to update
three variables (J , Z ′ and E) due to the dictionary instead of
two variables (the clean data and the noise) in R-TPCA, and 2)
empirically ADMM with more variables needs more iterations to
achieve a certain optimization accuracy ε. But experiment results
in Sec. 9 show that TLRR only runs a little slower than R-TPCA
but provides much better clustering and recovery results.

8 DICTIONARY CONSTRUCTION

A qualified dictionary A is necessary in TLRR, as the bases in A
should be able to linearly represent each authentic sample in the
clean data L0. In this way, the clean data can be exactly recovered
and the learnt relationship among samples is accurate. Here we
provide two different approaches to construct the dictionary A.

The first one uses the raw tensor data X as the dictionary
A, which is similar to the strategy used by LRR [1]. We call
this method S-TLRR with “S” denoting “simple”. In this case,
the learned representation Z? indicates the similarity between
samples and can be used for clustering (see details in Sec. 5.2).

However, when the data are heavily corrupted, taking the con-
taminated data as the dictionary would harm the performance—the
learned relationship among samples using a grossly corrupted
dictionary would be far less accurate. This is also reflected by
Theorem 4 that shows TLRR requires PUA(U0) = U0 for exact
recovery, i.e., the dictionary A and the clean samples should share
their tensor subspaces. In this challenging scenario, we propose
to use the estimation L′ for clean data L0 from R-TPCA as
the dictionary. Though R-TPCA hardly recovers L0 for a large
number of subspaces (see Sec. 6.3), it can remove noise from X
to some extent and provide a less noisy dictionary L′ than X .
This method is termed as Robust-TLRR or R-TLRR in short.

Algorithm 3 describes the steps of using R-TPCA [13] to
construct the dictionary A. We first use R-TPCA to denoise data
X for obtaining an estimation L′ to the clean data L0, and then

200 400 600 800 963
0

50

100

150

200

250

300

350

400

450

Index of Singular Values

S
in

g
u

la
r

V
al

u
es

80 160 240 321
0

100

200

300

400

500

Index of Singular Values

S
in

g
u

la
r

V
al

u
es

200 400 600 800 963
0

50

100

150

200

250

300

350

Index of Singular Values

S
in

g
u

la
r

V
al

u
es

80 160 240 321
0

100

200

300

400

500

Index of Singular Values

S
in

g
u

la
r

V
al

u
es

(a) (b) (c)

Fig. 6: Illustration of the low tubal rank property of the images
in Berkeley Segmentation dataset. (a) are two randomly selected
images. (b) plots the singular values of X̄ obtained by conducting
linear transformation on the DFT result X̄ of image tensor X .
(c) displays

∑n3

i=1 si, where si is the singular value vector (in a
descending order) of the i-th frontal slice X̄(i) of X̄ .

take a rank-truncated L′ as the dictionary. As for Steps 2 and 3,
we adopt the following strategies.

Step 2 For each frontal slice (L̄′)(i) of L̄′, we first compute the
nonzero singular values {σi1, · · · , σini

} (in a descending order)
of (L̄′)(i), and then let cij = σij/σ

i
j+1 (1 ≤ j ≤ ni − 1),

ji∗ = argmaxj c
i
j and ci∗ = ciji∗

. If (ni−1)ci∗/
∑
j 6=ji∗ c

i
j < 10

(need not truncation), then let ji∗ = ni. Finally, we obtain the
estimated tubal rank rL′ = max(j1

∗ , · · · , jn3
∗).

Step 3 By Theorem 2.3.1 in [12], problem (17) in Algorithm 3
has closed form solution: L′′=

∑rL′
j=1 U

′(:, j, :) ∗ S ′(j, j, :) ∗
(V ′(:, j, :))∗, where U ′ ∗ S ′ ∗ (V ′)∗ is the t-SVD of L′.

As Step 2 may reduce the estimated tubal rank of L′, together
with Step 3 the tubal rank rA of the dictionary and consequently
the coherence parameter µA

1 (L0) would be reduced. This will
benefit R-TLRR for exactly recovering L0 with relatively higher
rank (see conditions in Theorem 4).

The above dictionary construction method has another ap-
pealing property. In applications, we find that the constructed
dictionary A = L′′ usually satisfies the exact recovery condition
in Theorem 4—the ranks of Ā(i) (i = 1, · · · , n3) are equal.
The reason is that after Steps 2 and 3 in Algorithm 3, all frontal
slices (L̄′′)(i) (i = 1, · · · , n3) of the estimated data L′′ have
the same rank since the ranks of (L̄′′)(i) (i = 1, · · · , n3)
are usually larger than the computed truncation rank rL′ . To
verify this, we randomly select two images (Fig. 6 (a)) from the
Berkeley Segmentation dataset [39] and plot the singular values
of X̄ in Fig. 6 (b). We observe that most of these singular
values are very close to 0 and much smaller than the leading
singular values. Also, by Definition 3, the tensor tubal rank
rankt(X) = max(r1, · · · , rn3

), where ri is the rank of X̄(i).
So we compute the singular value vector si (elements are in a
descending order) of X̄(i) and plot v =

∑n3

i=1 si in Fig. 6 (c). We
find that the tubal rank of these images is indeed very low, since
most values in v are almost zero. So by the truncation operation
in Steps 2 and 3, the estimated tubal rank rL′ would be much
smaller than the rank of all frontal slices (L̄′′)(i) (i = 1, · · · , n3).
Thus, the constructed dictionary A = L′′ can obey the condition
that the ranks of Ā(i) (i = 1, · · · , n3) are equal to each other.
Accordingly, the exactly recovery performance can be guaranteed.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

(a) Extended YaleB (b) FRGC 2.0 (c) FRDUE
Dataset #Class #Per class #Total image Size Difficulty
YaleB 28 30 840 80× 60 ill.
FRGC 2.0 60 20 1200 32× 36 ill. and exp.
FRDUE 153 ≈ 20 3059 22× 25 def. and pos.

(d) Descriptions of the three datasets. (“ill.”, “exp.”, “def.” and “pos.” are short
for “illumination”, “expression”, “deformation” and “pose”, respectively .

Fig. 7: Experimental settings of the three testing datasets.

9 EXPERIMENTS

We compare our S-TLRR and R-TLRR with state-of-the-arts
for data recovery on both synthetic and real data. In all the
experiments, we fix the regularization parameters of R-PCA [21],
LRR [1] and R-LRR [3] (R-LRR uses the estimated data by R-
PCA as its dictionary) as 1/

√
max(n′1, n

′
2), where n′1×n′2 is the

data matrix size processed by them. For R-TPCA [13], S-TLRR
and R-TLRR, the parameter takes 1/

√
max(n1, n2)n3. These pa-

rameter settings are provided by the authors [3], [13], [21] and our
Theorem 4. We manually tune the parameters of other compared
methods. The code is available at https://panzhous.github.io/.

9.1 Application to Data Clustering
We first apply S-TLRR and R-TLRR for data clustering. See their
detailed clustering steps in Algorithm 1. We evaluate them on
face data, as most authentic face images approximately lie in a
union of low-rank linear subspaces [40]–[43]. Table 7 describes
the testing datasets: Extended YaleB (uncropped) [44], FRGC
2.0 [37] and FRDUE2. For FRDUE, we respectively use its first
100 and all classes for testing. Here we compare our methods with
other sparse and low-rank based methods, including LSA [45],
LSR1 [46], LSR2 [46], SSC [2], EnSC [47], R-PCA [21], LRR [1],
R-LRR [3], TLRRSC [15] and R-TPCA [13]. For our methods, we
organize the images along the 2nd dimension. Such organization
can well capture the linear representation relations among samples
(see Sec. 5.3). We use three metrics: accuracy (ACC) [2], normal-
ized mutual information (NMI) [48] and purity (PUR) [49], to
evaluate the clustering performance. We run all the experiments
for 20 times and report the average performance.

From the clustering results in Table 2, one can observe that
R-TLRR always achieves the best clustering performance and
S-TLRR also outperforms others in most cases. On the widely
used ACC metric, R-TLRR respectively improves by 4.5%, 4.1%,
4.6% and 3.9% over the runner-up on the four testing cases (top-
down). These results clearly prove the superior performance and
robustness of our methods. These results come from the following
advantages of our method. 1) S-TLRR and R-TLRR effectively
exploit the multi-dimensional structure of the tensor data. In con-
trast, the matricization based methods directly unfold the tensor
data along certain mode which would destroy the multi-way low-
rank data structure and lead to degraded performance [12], [13].
2) Unlike R-TPCA that assumes data are from a single tensor
subspace, our methods consider the mixture structure in data
(more consistent with reality) and learn more accurate relations
among samples. Also, the results show that the robust versions,
i.e. R-TLRR and R-LRR, usually outperform their counterparts,
i.e. S-TLRR and LRR, since directly using the corrupted sample
data as the dictionary would lead to inaccurate representation.

2. http://cswww.essex.ac.uk/mv/allfaces/

(a) SSC (b) EnSC (c) LSR1 (d) LRR

(e) R-LRR (f) TLRRSC (g) S-TLRR (h) R-TLRR

Fig. 8: Comparison of block-diagonal structures learned by the
compared methods. Best viewed in color pdf file.

TLRRSC [15] does not perform well, for the following three
reasons. 1) It reshaps the 2-way face images into vectors and
destroys the intrinsic multi-way data structure. 2) Randomly
arranging the samples in the first (k−1) modes may give non-low-
rank tensor structure. 3) The Frobenius norm in TLRRSC can deal
with Gaussian noise but cannot well handle the complex noise in
face images [21]. Table 2 also reports the algorithm running time.
Note, the computational time of R-TLRR contains the time cost
for dictionary construction and solving the TLRR problem (13).
Besides, R-TLRR is always much faster than its counter-part R-
LRR, and S-TLRR runs faster than LRR in most cases. Though
LSR1, LSR2, and EnSC are also efficient, tuning their critical
regularization parameters requires significant additional effort.

We further display the block-diagonal structures learned by
some compared methods in Fig. 8. For expediently plotting the
representation tensors in our methods, we simply plot Ẑ defined
in (8). Due to space limit, we only display the coefficients among
the first 10 classes in FRGC 2.0, e.g. Ẑ(1:200, 1:200) in our
methods. We can observe better grouping effects of S-TLRR and
R-TLRR over others. It also helps explain the superiority of our
methods and reasonability of the tensor subspace assumption—the
block-diagonal structures learned by our methods coincide with
Theorem 3.

To verify that TLRR can clean and cluster data simultaneously,
we use FRGC 2.0 for evaluation. Here we use its original images
of sizes 72 × 64. For each image, we respectively randomly set
0% ∼ 35% of pixels to random values in [0, 255] and then apply
these compared methods. From Fig. 9, we find under different
noise ratios, R-TLRR always achieves the best results, while S-
TLRR cannot work well with high noise ratio. This is because R-
TLRR uses a more qualified dictionary and Theorem 4 guarantees
the exact recovery of TLRR when the noise ratio is relatively
low and the dictionary is sufficiently good. We also compute the
error err = ‖L0

? − L?‖F /(n1n2n3) for performance measure,
where L0

? is the recovered data by R-TLRR without corruption
and L? denotes the estimated clean data by R-TLRR with sparse
noise (5% ∼ 35%). From Fig. 10, we can see err is very small,
implying that R-TLRR can recover the low-rank clean data from
noisy cases. So the learned representations under different noise
ratios are similar, providing almost the same performance.

9.2 Application to Data Recovery
9.2.1 Application to Synthetic Data Recovery
Here we evaluate TLRR and compare it with R-TPCA. R-TLRR
uses the recovered data by R-TPCA as the dictionary A which

https://panzhous.github.io/
http://cswww.essex.ac.uk/mv/allfaces/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 2: Clustering results (ACC, NMI and PUR) and the algorithm running time (in seconds) on the three testing databases.
Dataset Metric LSA LSR1 LSR2 SSC EnSC R-PCA LRR R-LRR TLRRSC R-TPCA S-TLRR R-TLRR

Extended YaleB

ACC 0.461 0.819 0.813 0.821 0.828 0.708 0.753 0.803 0.662 0.720 0.845 0.873
NMI 0.660 0.882 0.876 0.885 0.890 0.820 0.871 0.888 0.787 0.832 0.897 0.927
PUR 0.535 0.843 0.837 0.841 0.850 0.728 0.796 0.825 0.673 0.744 0.857 0.877
Time 722.8 0.22 0.26 2027.4 42.3 1728.5 274.1 1813.6 728.2 200.7 555.3 697.6

FRGC 2.0

ACC 0.540 0.865 0.863 0.861 0.870 0.735 0.795 0.830 0.602 0.812 0.891 0.911
NMI 0.772 0.927 0.921 0.924 0.933 0.873 0.901 0.922 0.841 0.906 0.947 0.963
PUR 0.614 0.868 0.858 0.865 0.870 0.765 0.825 0.855 0.657 0.838 0.910 0.929
Time 574.5 0.24 0.25 676.3 32.6 1611.4 304.7 1734.6 901.4 49.8 141.6 162.4
ACC 0.553 0.763 0.744 0.796 0.800 0.626 0.707 0.753 0.673 0.658 0.825 0.846

FRDUE NMI 0.769 0.918 0.911 0.921 0.920 0.821 0.884 0.920 0.858 0.837 0.927 0.943
(100 classes) PUR 0.541 0.821 0.806 0.831 0.836 0.716 0.773 0.792 0.726 0.740 0.852 0.874

Time 1350.2 0.96 0.88 844.9 16.5 354.06 190.0 397.1 568.2 36.6 117.9 147.2
ACC 0.490 0.740 0.712 0.773 0.779 0.632 0.702 0.721 0.635 0.695 0.785 0.818

FRDUE NMI 0.678 0.900 0.895 0.905 0.907 0.814 0.830 0.894 0.817 0.880 0.914 0.932
(all classes) PUR 0.513 0.801 0.781 0.816 0.829 0.725 0.770 0.775 0.704 0.752 0.821 0.852

Time 2926.6 1.03 0.98 1011.5 21.0 472.9 305.3 569.6 755.4 49.2 183.9 205.2

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Noise Ratio (%)

A
C

C

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Noise Ratio (%)

N
M

I

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Noise Ratio (%)

P
U

R

R−TLRR S−TLRR R−TPCA TLRRSC R−LRR LRR R−PCA ENSC SSC LRS1 LRS2

Fig. 9: Clustering results (ACC, NMI and PUR) on noisy FRGC
2.0. Best viewed in ×2 sized color pdf file.

(a) Corrupted images (b) Recovered images in (a) by R-TLRR
Noise 5% 10% 15% 20% 25% 30% 35%
err 2.1−6 3.0−6 4.0−6 5.0−6 6.1−6 7.5−6 3.9−5

(c) Numerical recovery performance on all images.

Fig. 10: Recovery performance of R-TLRR on FRGC 2.0. (a)
Images of 0%, 10%, 20%, 30% corruptions (from left to right).
(b) Recovered images in (a) by R-TLRR (from left to right).

(approximatively) meets the condition PU0(UA) = UA, while
S-TLRR does not. So we verify Theorem 4 on R-TLRR.

We generate L0 and E0 as follows. We produce 6 random
low-rank tensors {L1, · · · ,L6} with Li = Bi ∗ Ci, where
the entries of Bi ∈ Rn1×ri×n3 and Ci ∈ Rri×mi×n3 are
from i.i.d. N (0, 1). So Li is a low-rank tensor of mi samples
and tubal rank ri. Then let L0 = [L1, · · · ,L6] ∈ Rn1×n2×n3 ,
where n2 =

∑6
i=1mi and rankt(L0) =

∑6
i=1 ri. As for E0, its

support set Ω is chosen uniformly at random. We test two kinds
of noise: (a) similar to [3], we normalize the values of entries in
L0 such that ‖L0‖∞ = 1 and i.i.d. produce the noise in E0 as
±1 with probability 0.5; (b) L0 is not normalized and the noise
in E0 is also drawn from i.i.d. N (0, 1). For simplicity, we set
n1 = 240, n3 = 20, mi = 500 and ri = r which varies from
1 to 24. The fraction ρ = |Ω|/(n1n2n3) ranges from 2.5% to
65% with increment 2.5%. Similar to [3], for each pair (ρ, r),
we simulate 20 test instances and declare a trial successful if the
recovered L? obeys ‖L? −L0‖F /‖L0‖F ≤ 0.05.

Fig. 11 reports the experimental results. In both cases, R-
TLRR exactly recovers the clean data (gray and block areas) when
the tubal rank rankt(L0) is relatively low and the ratio ρ of noise
is small, as implied by Theorem 4. Also, R-TLRR outperforms R-
TPCA, as there are some cases (gray areas) that R-TLRR succeeds
while R-TPCA fails. This coincides with the conclusion in Sec. 6.3
that R-TLRR has a stronger recovery ability than R-TPCA. The
results also show validity of the dictionary built by T-RPCA.

C
o

rr
u

p
ti

o
n

 (
%

)

Rank/n2 (%)
5 10 15 20 25 30 35 40 45 50 55 60

65
60
55
50
45
40
35
30
25
20
15
10
5

C
o

rr
u

p
ti

o
n

 (
%

)

Rank/n2 (%)
5 10 15 20 25 30 35 40 45 50 55 60

65
60
55
50
45
40
35
30
25
20
15
10
5

(a) (b)
Fig. 11: Comparison between R-TPCA and R-TLRR. White
Region: Both R-TPCA and R-TLRR succeed. Gray Regions: R-
TLRR succeeds while R-TPCA fails. Black Regions: Both R-
TPCA and R-TLRR fail. (a) Normalize L0 such that ‖L0‖∞ = 1
and i.i.d. produce±1 noise in E0 with probability 0.5. (b) Produce
i.i.d. N (0, 1) noise in E0.

9.2.2 Application to Image/Video Denoising

Here we evaluate the denoising performance of R-TLRR. As
analyzed in Sec. 9.2.1, S-TLRR uses corrupted data as its dic-
tionary and cannot be applied for exact recovery. We use the
Berkeley segmentation dataset [39] and YUV video sequences3

for testing. Berkeley dataset contains 200 color images of various
natural scenes. The YUV dataset includes 26 videos. See details
in Sec. 2 of supplementary. In the experiments, we organize the
color images along the channel direction to form a w × n × h
tensor with images size w × h and channel number n. Similarly,
for videos, w × h and n respectively represent the frame size and
frame number. We use the peak signal-to-noise ratio (PSNR) to
evaluate the denoising performance:

PSNR = 10 log10

(
n1n2n3‖L0‖2∞/‖L? −L0‖2F

)
,

where L? is the recovered tensor of L0 ∈ Rn1×n2×n3 .
Our method and other low-rank based methods can be ap-

plicable for image/video denoising. Many works [3], [13], [21]
validated that image and video data can be well approximated
by low-rank matrices/tensors. Moreover, from the previous result
in Fig. 6, the images in Berkeley dataset have low tubal rank
structure. See details at the end of Sec. 8. So low-rank based
methods are applicable to them. The low tubal rank structure of
the testing video data is also notable but is not revealed here due
to the similar results as images.
Image denoising: For each testing image, we randomly set

5% ∼ 30% of pixels to random values in [0, 255] and then apply

3. http://trace.eas.asu.edu/yuv/

http://trace.eas.asu.edu/yuv/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

5% 10% 15% 20% 25% 30%
20

25

30

Noise Ratio

A
vg

. P
S

N
R

 (
dB

s)

26.0 25.5 25.0 24.5 23.9 23.1

26.6 26.2 25.5 25.0 24.3
23.4

28.3 27.6 26.9 26.2
25.4

24.6

30.5
29.5

28.5
27.5

26.6
25.5

32.1
31.0

30.0
29.0

27.8
26.4

R−PCA R−LRR SNN R−TPCA R−TLRR

Fig. 12: Comparison of the image denoising performance. We apply the compared methods to recover the 200 images corrupted by
5% ∼ 30% noise in Berkeley dataset and report the average PSNR values on the 200 images. Best viewed in ×2 sized color pdf file.

(a) Original image (b) Corrupted image (c) R-PCA (d) R-LRR (e) SNN (f) R-TPCA (g) R-TLRR

Image R-PCA R-LRR SNN R-TPCA R-TLRR Image R-PCA R-LRR SNN R-TPCA R-TLRR
Hydrophyte 23.9 25.0 25.8 26.6 29.5 Deers 24.1 24.8 25.4 26.0 28.5

Man 22.2 23.7 23.6 23.7 26.1 Girls 22.5 23.4 24.6 25.1 27.7
(h) PSNR values achieved by the compared methods on the above four images.

Fig. 13: Examples of image denoising under noise ratio 20%. (a) Original image. (b) Corrupted image. (c)-(g) are the recovered results
by the compared methods. (h) PSNR values on the above six images. Best viewed in ×2 sized color pdf file.

these compared methods to recover it. The corrupted locations are
unknown for these compared methods.

Fig. 12 reports the average PSNR values (on top of each bar)
achieved by the compared methods. R-TLRR always performs the
best and it improves the average PSNR values by about 1.5 dBs
over the runner-up under different noise ratios. Besides, R-TLRR
mostly outperforms others on every image. For instance, when the
noise ratio is 20%, R-TLRR makes at least 2.0, 1.5, 1.0 and 0.5
dBs improvements than the second best on 41, 105, 174, and 194
images, respectively. See more details in Sec. 2 in supplementary.

Fig. 13 displays the denoising results with their PSNR values
when the noise ratio is 20%. R-TLRR performs much better the
others. It preserves more details. For instance, it well recovers
the contours of hydrophyte leaves and the spots of deers. R-
TLRR improves by at least 2.4 dB over the second best R-TPCA
on the testing images. As R-PCA and LRR recover the R, G
and B channels separately and do not fully utilize the structure
information, their performance is worse than the tensor based
methods. Matricization based methods, e.g. SNN may destroy the
data structure and lose optimality of the low-rank property [11],
[12]. Conversely, our R-TLRR avoids the low-rank structure
information loss [12], [13], hence giving better performance. R-
TLRR also outperforms R-TPCA, according with Theorem 4 in
Sec. 6.3: when given a qualified dictionary, R-TLRR has a stronger
recovery guarantee than R-TPCA. This also demonstrates that the

dictionary pursued by R-TPCA is qualified.
Video denoising: We also randomly set 5% ∼ 30% of pixels

in each video sequence to random values in [0, 255]. From the
denoising results in Fig. 14, one can see that our R-TLRR always
outperforms other methods and it respectively improves the aver-
age PSNR values on the 26 videos by about 1.9, 1.8, 1.7, 1.5, 1.3
and 0.8 dBs over the second best method, i.e. R-TPCA, for the six
noise ratios. Moreover, tensor based methods, i.e. SNN, R-TPCA
and our method, outperform matrix based methods, i.e. RPCA and
LRR. Table 3 reports the PSNR values under noise ratio 20%.
R-TLRR achieves the best denoising results on all testing videos.

10 CONCLUSION

In this paper, we proposed a new tensor low-rank representation
(TLRR) method for tensor data denoising and clustering. TLRR
takes advantage of the multi-dimensional structure in tensor data
and directly performs the low-rank representation on raw tensor
data. In this way, it avoids destroying the tensor structure like other
matrix based methods (e.g. LRR) and better preserves the low-rank
structure. Unlike R-TPCA, TLRR considers the mixture structure
in data, more consistent with practical data distribution, and thus
obtains better performance. We further prove the tensor block-
diagonal property of the optimal solution to the TLRR problem
and analyze the exact recovery ability of TLRR theoretically. By
comparison, when equipped with a qualified dictionary, TLRR

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

5% 10% 15% 20% 25% 30%
20

25

30

35

Noise Ratio

A
vg

. P
S

N
R

 (
dB

s)

27.5 27.0 26.4 25.8 25.0 24.2

28.2 27.7 27.1 26.5 25.7
24.5

32.2
30.3

28.2
26.1

24.0
21.7

33.3 32.9 32.4 31.9 31.1
29.8

35.2 34.7 34.1 33.4
32.4

30.6

R−PCA R−LRR SNN R−TPCA R−TLRR

Fig. 14: Comparison of the video denoising performance. We apply the compared methods to recover the 26 videos corrupted by
5% ∼ 30% noise in YUV dataset and report the average PSNR values on the 26 videos. Best viewed in ×2 sized color pdf file.

TABLE 3: PSNR values on the YUV video sequences.
ID Video name R-PCA R-LRR SNN R-TPCA R-TLRR
1 Akiyo 26.2 26.6 30.24 34.8 36.5
2 Big Buck Bunny 33.2 33.3 20.9 34.9 36.5
3 Bridge (close) 25.8 26.3 29.7 36.2 37.6
4 Bridge (far) 30.7 30.8 35.6 43.3 44.1
5 Bus 23.2 24.2 17.1 23.3 23.9
6 Carphone 24.6 25.9 28.3 30.7 32.4
7 Claire 26.9 28.5 32.4 36.0 37.6
8 Coastguard 25.0 25.7 25.4 27.7 28.5
9 Container 23.0 23.9 27.8 36.4 38.3
10 Elephants Dream 33.8 34.0 22.2 37.7 40.7
11 Flower 22.6 22.7 22.3 23.6 24.7
12 Foreman 25.1 25.7 26.2 29.6 31.4
13 Grandma 25.2 26.5 31.3 37.2 38.8
14 Hall 23.9 24.7 28.1 31.6 33.2
15 Highway 27.7 27.7 28.7 31.0 31.8
16 Miss America 27.3 29.2 31.3 34.1 36.1
17 Mobile 20.4 20.7 21.2 26.1 27.7
18 Mother Daughter 28.0 28.5 31.1 34.4 36.0
19 News 22.7 24.2 26.9 30.3 32.6
20 Paris 21.4 22.6 17.8 26.9 29.0
21 Salesman 23.6 24.6 27.8 32.6 34.4
22 Silent 27.0 27.8 29.9 32.6 34.1
23 Stefan 22.2 23.3 18.4 23.4 23.8
24 Suzie 28.7 29.6 29.6 30.9 32.8
25 Tempete 23.6 24.3 17.9 27.6 28.9
26 Waterfall 27.7 28.3 20.7 35.6 37.4

has stronger recovery power than R-TPCA. Finally, we develop
two variants of TLRR, i.e., S-TLRR and R-TLRR with different
dictionary construction strategies. Extensive data clustering and
recovery experiments testify the superiority of our methods.

ACKNOWLEDGMENT

Jiashi Feng was partially supported by NUS IDS R-263- 000-C67-
646, ECRA R-263-000-C87-133, MOE Tier-II R-263-000-D17-
112 and AI.SG R-263-000-D97-490. Zhouchen Lin is supported
by NSF China under grant no.s 61625301 and 61731018, Zhejiang
Lab., and Beijing Academy of Artificial Intelligence.

REFERENCES

[1] G. Liu, Z. Lin, and Y. Yu, “Robust subspace segmentation by low-rank
representation,” in Proc. Int’l Conf. Machine Learning, 2010, pp. 663–
670.

[2] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm,
theory, and applications,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 35, no. 11, pp. 2765–2781, 2013.

[3] G. Liu, Q. Liu, and P. Li, “Blessing of dimensionality: Recovering
mixture data via dictionary pursuit,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 35, no. 1, pp. 171–184, 2016.

[4] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery of
subspace structures by low-rank representation,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 35, no. 1, pp. 171–184, 2013.

[5] Y. Cui, C. Zheng, and J. Yang, “Identifying subspace gene clusters from
microarray data using low-rank representation,” PloS One, vol. 8, no. 3,
pp. e59377, 2013.

[6] C. Lang, G. Liu, J. Yu, and S. Yan, “Saliency detection by multitask
sparsity pursuit,” IEEE Trans. on Image Processing, vol. 21, no. 3, pp.
1327–1338, 2012.

[7] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, “Low-rank sparse learning
for robust visual tracking,” in European Conf. on Computer Vision, 2012,
pp. 470–484.

[8] G. Liu and S. Yan, “Latent low-rank representation for subspace
segmentation and feature extraction,” in Proc. IEEE Conf. Computer
Vision, 2011, pp. 1615–1622.

[9] M. Yin, J. Gao, and Z. Lin, “Laplacian regularized low-rank representa-
tion and its applications,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 38, no. 3, pp. 504–517, 2016.

[10] M. Kilmer, K. Braman, N. Hao, and R. Hoover, “Third-order tensors
as operators on matrices: A theoretical and computational framework
with applications in imaging,” SIAM Journal on Matrix Analysis and
Applications, vol. 34, no. 1, pp. 148–172, 2013.

[11] C. Mu, B. Huang, J. Wright, and D. Goldfarb, “Square deal: Lower
bounds and improved relaxations for tensor recovery,” in Proc. Int’l
Conf. Machine Learning, 2013, pp. 73–81.

[12] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer, “Novel methods
for multilinear data completion and de-noising based on tensor-SVD,” in
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2014, pp.
3842–3849.

[13] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, “Tensor robust
principal component analysis: Exact recovery of corrupted low-rank
tensors via convex optimization,” in Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 2016, pp. 5249–5257.

[14] B. Huang, C. Mu, D. Goldfarb, and J. Wright, “Provable low-rank tensor
recovery,” Optimization Online, vol. 4252, pp. 2, 2014.

[15] Y. Fu, J. Gao, D. Tien, Z. Lin, and H. Xia, “Tensor lrr and sparse
coding-based subspace clustering,” IEEE Trans. on Neural Networks
and Learning Systems, vol. 27, no. 10, pp. 2120–2133, 2016.

[16] L. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[17] H. Lee, A. Battle, R. Raina, and A. Ng, “Efficient sparse coding
algorithms,” in Proc. Conf. Neutral Information Processing Systems,
2007, pp. 801–808.

[18] C. Zhang, H. Fu, S. Liu, G. Liu, and X. Cao, “Low-rank tensor con-
strained multiview subspace clustering,” in Proc. IEEE Conf. Computer
Vision, 2016, pp. 1582–1590.

[19] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2015, pp.
1–9.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[21] E. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?,” Journal of the ACM, vol. 58, no. 3, pp. 11, 2011.

[22] Z. Lin, R. Liu, and Z. Su, “Linearized alternating direction method with
adaptive penalty for low-rank representation,” in Proc. Conf. Neutral
Information Processing Systems, 2011, pp. 612–620.

[23] H. Kiers, “Towards a standardized notation and terminology in multiway
analysis,” Journal of Chemometrics, vol. 14, no. 3, pp. 105–122, 2000.

[24] C. Hillar and L. Lim, “Most tensor problems are NP-hard,” Journal of
the ACM, vol. 60, no. 6, pp. 45, 2013.

[25] J. Landsberg, Tensors: Geometry and Applications, American Mathe-
matical Society, 2012.

[26] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for
estimating missing values in visual data,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 35, no. 1, pp. 208–220, 2013.

[27] D. Goldfarb and Z. Qin, “Robust low-rank tensor recovery: Models and
algorithms,” SIAM Journal on Matrix Analysis and Applications, vol. 35,
no. 1, pp. 225–253, 2014.

[28] B. Romera-Paredes and M. Pontil, “A new convex relaxation for tensor
completion,” Proc. Conf. Neutral Information Processing Systems, pp.
2967–2975, 2013.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[29] Z. Song, D. P. Woodruff, and P. Zhong, “Relative error tensor low rank
approximation,” arXiv:1704.08246, 2017.

[30] M. Mahoney and P. Drineas, “CUR matrix decompositions for improved
data analysis,” Proc. of the National Academy of Sciences, vol. 106, no.
3, pp. 697–702, 2009.

[31] M. Kilmer and C. Martin, “Factorization strategies for third-order
tensors,” Linear Algebra and its Applications, vol. 435, no. 3, pp. 641–
658, 2011.

[32] T. Kolda and B. Bader, “Tensor decompositions and applications,” SIAM
Review, vol. 51, no. 3, pp. 455–500, 2009.

[33] P. Zhou and J. Feng, “Outlier-robust tensor PCA,” in Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2017, pp. 1–9.

[34] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, “Tensor robust
principal component analysis with a new tensor nuclear norm,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, 2018.

[35] P. Zhou, C. Lu, Z. Lin, and C. Zhang, “Tensor factorization for low-rank
tensor completion,” IEEE Trans. on Image Processing, vol. 27, no. 3, pp.
1152 – 1163, 2017.

[36] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp.
888–905, 2000.

[37] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang,
K. Hoffman, J. Marques, J. Min, and W. Worek, “Overview of the face
recognition grand challenge,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 2005, pp. 947–954.

[38] D. Gross, “Recovering low-rank matrices from few coefficients in any
basis,” IEEE Trans. on Information Theory, vol. 57, no. 3, pp. 1548–
1566, 2011.

[39] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. IEEE Int’l.
Conf. Computer Vision, 2001, pp. 416–423.

[40] P. Zhou, Z. Lin, and C. Zhang, “Integrated low-rank-based discriminative
feature learning for recognition,” IEEE Trans. on Neural Networks and
Learning Systems, vol. 27, no. 5, pp. 1080–1093, 2016.

[41] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 31, pp. 210–227, 2009.

[42] P. Zhou, C. Fang, Z. Lin, C. Zhang, and E. Chang, “Dictionary learning
with structured noise,” Neurocomputing, vol. 273, pp. 414–423, 2017.

[43] P. Zhou, C. Zhang, and Z. Lin, “Bilevel model based discriminative
dictionary learning for recognition,” IEEE Trans. on Image Processing,
vol. 26, no. 3, pp. 1173–1187, 2017.

[44] A. Georghiades, P. Belhumeur, and D. Kriegman, “From few to many:
Illumination cone models for face recognition under variable lighting and
pose,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.
23, no. 6, pp. 643–660, 2001.

[45] J. Yan and M. Pollefeys, “A general framework for motion segmen-
tation: Independent, articulated, rigid, non-rigid, degenerate and non-
degenerate,” in European Conf. Computer Vision, 2006, pp. 94–106.

[46] C. Lu, H. Min, Z. Zhao, L. Zhu, D. Huang, and S. Yan, “Robust
and efficient subspace segmentation via least squares regression,” in
European Conf. on Computer Vision, 2012, pp. 347–360.

[47] C. You, C. Li, D. Robinson, and R. Vidal, “Oracle based active set
algorithm for scalable elastic net subspace clustering,” in Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 2016, pp. 3928–3937.

[48] N. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for clus-
terings comparison: Variants, properties, normalization and correction for
chance,” JMLR, vol. 11, pp. 2837–2854, 2010.

[49] C. Manning, P. Raghavan, and H. Schutze, “Introduction to information
retrieval,” Cambridge University Press, 2010.

Pan Zhou received Master Degree in computer
science from Peking University in 2016. Now
he is a Ph.D. candidate at the Department of
Electrical and Computer Engineering (ECE), Na-
tional University of Singapore, Singapore. His
research interests include computer vision, ma-
chine learning, and optimization. He was the
winner of the Microsoft Research Asia Fellow-
ship 2018.

Canyi Lu is currently a postdoctoral research
associate in Carnegie Mellon University. He re-
ceived his Ph.D. degree from the National Uni-
versity of Singapore in 2017. His current re-
search interests include computer vision, ma-
chine learning, pattern recognition and optimiza-
tion. He was the winner of the Microsoft Re-
search Asia Fellowship 2014.

Jiashi Feng received the Ph.D. degree from the
National University of Singapore (NUS) in 2014.
He was a Post-Doctoral Research Follow with
the University of California at Berkeley, Berkeley.
He joined NUS as a Faculty Member, where
he is currently an Assistant Professor with the
Department of Electrical and Computer Engi-
neering. His research areas include computer
vision, machine learning, robust learning, and
deep learning.

Zhouchen Lin is currently a professor in School
of Electronics Engineering and Computer Sci-
ence, Peking University. His research interests
include computer vision, image processing, ma-
chine learning, pattern recognition, and numer-
ical optimization. He is an area chair of CVPR
2014/2016/2019, ICCV 2015, NIPS 2015/2018
and AAAI 2019, and a senior program commit-
tee member of AAAI 2016/2017/2018 and IJCAI
2016/2018. He is an associate editor of the IEEE
Transactions on Pattern Analysis and Machine

Intelligence and the International Journal of Computer Vision. He is an
IAPR Fellow and IEEE Fellow.

Shuicheng Yan is chief technology officer of
YITU tech company, and also the Dean’s Chair
Associate Professor at National University of
Singapore. Dr. Yan’s research areas include ma-
chine learning, computer vision and multimedia,
and he has authored/co-authored hundreds of
technical papers over a wide range of research
topics, with Google Scholar citation over 20,000
times and H-index 66. He is ISI Highly-cited
Researcher of 2014, 2015 and 2016. His team
received 7 times winner or honorable-mention

prizes in PASCAL VOC and ILSVRC competitions, along with more than
10 times best (student) paper prizes. He is also an IAPR Fellow and
IEEE Fellow.

