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1 STRUCTURE OF THIS DOCUMENT

This document is organized as follows. Firstly, it provides more
experimental results on the image denoising task in Sec. 2. Then
in Sec. 3 it elaborates on the optimization procedure and details of
Algorithm 2 in the manuscript. Next, this document provides the
proofs of Theorems 2 ∼ 5. Specifically, Sec. 4 introduces some
additional necessary notations, definitions and properties used in
this document. Sec. 5 presents the proofs of Theorem 2. Sec. 6
presents the proofs of Theorem 3. In Sec. 7, we prove Theorem 4.
At last, Sec. 8 introduces the proofs of Theorem 5.

2 MORE EXPERIMENTAL RESULTS

Here we first provide more information about the Berkeley image
segmentation dataset1 and YUV video sequences2. The Berkeley
segmentation dataset contains total 200 color images of various
natural scenes and their sizes are 321× 481× 3. The YUV video
sequences contain 26 videos whose categories, frame sizes and
frame numbers are reported in Table 4.

Then we report the PSNR values on the total 200 testing
images in Berkeley segmentation dataset for the case that we
randomly set 20% of pixels to random values in [0, 255] for
each testing image. Fig. 16 summaries these PSNR values on
the total 200 images. One can observe that our R-TLRR always
outperforms others. Concretely, it makes at least 2.0, 1.5, 1.0 and
0.5 dBs improvement than the second best on 41, 105, 174, and
194 images, respectively. Notice, there are only two images on
which our method cannot achieve the highest PSNR values. So
our R-TLRR can achieve the best denoising performance on each
images in most cases. These results verify the advantages and
robustness of our method and are consistent with the denoising
results in manuscript.

Finally, in Fig. 17 we provide more denoising results with
the PSNR values when the noise ratio is 20%. As mentioned in
the manuscript, R-TLRR can preserves more details and performs
much better the other compared methods. E.g., it can well pre-
serves the jaws of penuins and the stripes of the tiger, etc. For
numerical results, R-TLRR improves by at least 2.4 dB over the
second best R-TPCA on the six testing images. All these results
are consistent with the denoising results in the manuscript. All
results show the superiority of the proposed TLRR.

1. https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
2. http://trace.eas.asu.edu/yuv/

TABLE 4: Description of the YUV video sequences. As for video
size m× n× l, m× n is frame size and l is frame number.

ID Video name Video size ID Video name Video size
1 Akiyo 176× 144× 100 14 Hall 176× 144× 100
2 Big Buck Bunny 352× 288× 100 15 Highway 176× 144× 100
3 Bridge (close) 176× 144× 100 16 Miss America 176× 144× 100
4 Bridge (far) 176× 144× 100 17 Mobile 176× 144× 100
5 Bus 352× 288× 100 18 Mother Daughter 176× 144× 100
6 Carphone 176× 144× 100 19 News 176× 144× 100
7 Claire 176× 144× 100 20 Paris 352× 288× 100
8 Coastguard 176× 144× 100 21 Salesman 176× 144× 100
9 Container 176× 144× 100 22 Silent 176× 144× 100
10 Elephants Dream 352× 288× 100 23 Stefan 352× 288× 90
11 Flower 176× 144× 100 24 Suzie 176× 144× 100
12 Foreman 176× 144× 100 25 Tempete 352× 288× 100
13 Grandma 176× 144× 100 26 Waterfall 352× 288× 100

3 OPTIMIZATION DETAILS OF ALGORITHM 2

Here we elaborate on the optimization to problem (14) in the
manuscript, namely the following problem:

min
J ,Z′,E

‖Z ′‖∗+λ‖E‖1, s.t. Z ′ = J ,X = D ∗J +E. (18)

To tackle the hard constraints, we resort to augmented Lagrangian
multiplier method and solve the following problem instead:

H(J ,Z ′,E,Y1,Y2)=‖Z ′‖∗+λ‖E‖1+
〈
Y1,Z ′−J

〉
+

β

2

∥∥Z ′−J ∥∥2

F
+
〈
Y2,X−D∗J −E

〉
+
β

2
‖X−D∗J −E‖2F ,

where Y1 and Y2 are the Lagrange multipliers introduced for the
two constraints respectively, and β is an auto-adjusted penalty pa-
rameter. Then we solve the problem through alternately updating
J , Z ′ and E in each iteration to minimizeH(J ,Z ′,E,Y1,Y2)
with other variables fixed. Details on the update of each variable
are provided as follows.
Updating J : We minimize the following problem

J k+1 = argmin
J

∥∥∥Q1
k −J

∥∥∥2

F
+
∥∥∥Q2

k −D ∗J
∥∥∥2

F

= (D∗ ∗D + I)
−1 ∗

(
Q1
k + D∗ ∗Q2

k

)
,

(19)

where Q1
k = Z ′k + Y1

k/βk and Q2
k = X − Ek + Y2

k/βk.

https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
http://trace.eas.asu.edu/yuv/
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Fig. 16: Comparison of the PSNR values achieved by the compared methods on the 200 images in the Berkeley segmentation dataset.
We randomly set 20% of pixels to random values in each image. (a) The PSNR values on first 100 images. (b) The PSNR values on
the remaining 100 images. Best viewed in ×2 sized color pdf file.

(a) Original image (b) Corrupted image (c) R-PCA (d) R-LRR (e) SNN (f) R-TPCA (g) R-TLRR
Image R-PCA R-LRR SNN R-TPCA R-TLRR Image R-PCA R-LRR SNN R-TPCA R-TLRR Image R-PCA R-LRR SNN R-TPCA R-TLRR

Penuins 25.6 27.0 27.5 27.9 30.5 Tiger 22.4 24.5 24.5 26.3 28.9 Flowers 20.8 21.8 22.0 22.5 25.2
Fishes 21.0 22.7 23.5 25.6 28.6 Moray 21.0 22.7 23.5 25.6 28.6 Japanese man 22.2 23.7 23.6 23.7 26.1

(h) PSNR values achieved by the compared methods on the above six images.
Fig. 17: Examples of image denoising. We randomly set 20% of pixels to random values in each image. Best viewed in ×2 sized
color pdf file.
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The property ‖B‖2F = 1
n3
‖B̄‖2F in Lemma 1 and the block-

diagonal structure of B̄ imply that solving problem (17) is
equivalent to computing J̄ k+1

first:

J̄
(i)
k+1 =Ḡ(i)

(
(Q̄1

k)(i)+(D̄
(i)

)∗(Q̄2
k)(i)

)
, ∀i = 1, · · ·, n3,

(20)
where G = (D∗ ∗D + I)

−1. Then we can obtain J k+1 =
ifft(J̄ k+1, [], 3).
Updating the block (Z ′,E): For solving Z ′ and E , we put
(Z ′,E) into a large block of variables.

(Z ′k+1,Ek+1) = argmin
Z′,E

‖Z ′‖∗+λ‖E‖1+
βk
2

∥∥∥Z ′−R1
k

∥∥∥2

F

+
βk
2

∥∥∥R2
k − E

∥∥∥2

F
, (21)

where R1
k = J k+1 − Y1

k/βk and R2
k = X − D ∗ J k+1 +

Y2
k/βk. Problem (19) can be split into subproblems for Z ′ and

E as these two variables are independent in this minimization
problem. Accordingly, we update the variable Z ′ as follows:

Z ′k+1 = argmin
Z′

‖Z ′‖∗ +
βk
2

∥∥∥Z ′ −R1
k

∥∥∥2

F
.

Thus, by the properties ‖B‖2F = 1
n3
‖B̄‖2F and ‖B‖∗ = 1

n3
‖B̄‖∗

in Lemma 1 and Definition 4, respectively, we can optimize its
equivalent problem:

Z̄ ′k+1 = argmin
Z̄′

1

n3

(
‖Z̄ ′‖∗ +

βk
2

∥∥R̄1
k − Z̄ ′

∥∥2

F

)
.

Since Z̄ ′ is a block-diagonal matrix, we only need to update all
the block matrices (Z̄ ′)(i) (i = 1, · · · , n3) along the diagonal by
following closed-form solution:

(Z̄ ′k+1)(i) = S 1
βk

(
(R̄1

k)(i)
)
, i = 1, · · · , n3. (22)

Here S1/βk(·) is the singular value thresholding (SVT) opera-
tor [1]. Finally, we can compute Z ′k+1 = ifft(Z̄ ′k+1, [ ], 3). As
for E , we can update it by solving

Ek+1 = argmin
E

λ‖E‖1 +
βk
2

∥∥∥R2
k − E

∥∥∥2

F
.

Hence, we can obtain its closed-form solution:

Ek+1 = Ψλ/βk

(
R2
k

)
, (23)

where Ψλ/βk(·) is the soft thresholding [2]. The optimization
details are summarized in Algorithm 2.

Complexity Analysis. At each iteration, when updating J k+1

by Eqn. (18), the computational cost for the matrix product
and inverse DFT is O (rAn1n2n3 + rA(n1 + n2)n3 log(n3)).
The major cost of updating Zk+1 by (20) includes n3 SVD
on rA × n2 matrices at the cost of O(r2

An2n3) and comput-
ing the inverse DFT at the cost of O(rAn2n3 log(n3)). When
updating Ek+1 by (21), the step of tensor product D ∗ J k+1

costs O (rAn1n2n3 + rA(n1 + n2)n3 log(n3)). So the cost of
Algorithm 2 is O (rAn1n2n3 + rA(n1 + n2)n3 log(n3)) for
each iteration.

Note, our optimization method can be implemented in parallel,
as at each iteration all frontal slices J̄ (i)

k+1 (i=1, · · ·, n3) of J̄ can
be parallelly updated which is the main computation cost when
updating J k+1. Similarly, when updating Z ′k+1, all frontal slices
(Z̄ ′k+1)(i) (i = 1, · · · , n3) of Z̄ ′ can be parallelly computed. The

tensor product required for updating Ek can be also divided into
n3 matrix products in Fourier domain and thus can be parallelly
updated. DFT and inverse DFT can be parallelly conducted on
each tubes. So our optimization can be highly parallel. But for
fairness, we adopt the serial updating scheme in our implementa-
tion, which is also very fast (see experimental results in Sec. 9 in
manuscript).

4 NOTATIONS AND PRELIMINARIES

Besides the notations introduced in the main text, we introduce
some additional necessary notations used in this document. Then
we introduce two important properties about DFT on tensors,
which are commonly used later.

4.1 Notations

The tensor spectral (or operator) norm of B is defined as ‖B‖ =
‖B̄‖ [3]. The operator norm of an operator on tensor is defined as
‖L‖ = sup‖B‖F=1‖L(B)‖F . The `2,∞ norm of B is defined as
‖B‖2,∞ = maxi ‖B(:, i, :)‖F .

We use B† to denote the pseudo-inverse of B. We first
compute the pseudo-inverse (B̄

(i)
)† (i = 1, · · · , n3) of the

matrix B̄
(i)

which is the i-th frontal slice of the DFT result
B̄ of B. Then we can compute B† = ifft(B̄†, [ ], 3), where
(B̄

(i)
)† is the i-th frontal slice of B̄†. Actually, we can obtain

B† = V ∗S† ∗U∗, where B = U ∗S ∗V∗ is the t-SVD of B. It
is easy to check that the computed B† by the above method obeys
the conditions in Definition (5).

Assume that UA ∗SA ∗V∗A, U0 ∗S0 ∗V∗0, and U ∗S ∗V∗
are the skinny t-SVDs of A ∈ Rn1×n4×n3 , L0 ∈ Rn1×n2×n3 ,
and A† ∗L0 ∈ Rn4×n2×n3 , respectively. That is,

A = UA ∗ SA ∗ V∗A,
L0 = U0 ∗ S0 ∗ V∗0,
A† ∗L0 = U ∗ S ∗ V∗.

It also should be pointed out that for an arbitrary tensor M, if
M = UM ∗ SM ∗ V∗M is its skinny t-SVD, then UM and
VM obey

U∗M ∗ UM = I,
V∗M ∗ VM = I.

Suppose that for ∀i ∈ {1, · · · , n3}, Û
(i)
A Ŝ

(i)
A (V̂

(i)
A )∗,

Û
(i)
L0

Ŝ
(i)
L0

(V̂
(i)
L0

)∗, and Û (i)Ŝ(i)(V̂ (i))∗ are the skinny SVDs of
matrices Ā(i), L̄(i)

0 , and (Ā(i))†L̄
(i)
0 , respectively. That is,

Ā(i) = Û
(i)
A Ŝ

(i)
A (V̂

(i)
A )∗,

L̄
(i)
0 = Û

(i)
L0

Ŝ
(i)
L0

(V̂
(i)
L0

)∗,

(Ā(i))†L̄
(i)
0 = Û (i)Ŝ(i)(V̂ (i))∗.

Next, we define the commonly used operators in this docu-
ment. Define that PV(B) = B ∗ V ∗ V∗, PUPV(B) =
U ∗ U∗ ∗ B ∗ V ∗ V∗, PT (B) = PU (B) + PV(B) −
PUPV(B), PT 0(B) = PU0(B) + PV0(B)−PU0PV0(B),
and PT A

0
(B) = PUAPT 0(B) = PU0(B) +PUAPV0(B)−

PU0
PV0

(B).
Now we introduce standard tensor basis defined in Defini-

tion 8, which is commonly to operate the tensors in the proofs.
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Definition 8. (Standard tensor basis) [3] For an arbitrary tensor
B ∈ Rn1×n2×n3 , its column basis is e̊i of size n1 × 1 × n3

with the (i, 1, 1)-th entry equaling to 1 and the rest equaling to 0.
Similarly, the row basis is e̊∗j of size 1×n2×n3 with the (1, j, 1)-
th entry equaling to 1 and the rest equaling to 0. The tube basis is
ėk of size 1× 1× n3 with the (1, 1, k)-th entry equaling to 1 and
the rest equaling to 0.

Based on the tensor basis, for brevity, we further define
eijk = e̊i ∗ ėk ∗ e̊∗j . Then for any B ∈ Rn1×n2×n3 , we have
B =

∑
ijk〈eijk,B〉eijk =

∑
ijk Bijkeijk.

Finally, we give the third coherence parameter of L0 which is
related to the dictionary A.

Definition 9. For a low-rank tensor L0 ∈ Rn1×n2×n3 with a
dictionary A, assume that the skinny t-SVDs of L0 and A† ∗L0

are respectively U0 ∗S0 ∗V∗0 and U ∗S ∗V∗, and the dictionary
A obeys PUA(U0) = U0. Then the third parameter of L0 is
defined as

µA
3 =

n3 max(n1, n2)

r(κA)2 log (n3 max(n1, n2))

∥∥∥(A∗)† ∗ U ∗ V∗∥∥∥2

2,∞
,

where r = rankt(L0) and κA = ‖A‖‖A†‖.
Note that ‖A‖ = ‖Ā‖ is the spectral (or operator) norm

which is defined in [3]. In LRR [4], Liu et al. also define
a coherence parameter µA

3 which is related to the dictionary
A used in their paper and is very similar to the definition of
µA

3 . They empirically find that µA
3 is a small value around a

small constant (though the size of random matrix varies) and
use this observe to simplify their proofs. Similar to LRR [3],
as shown in Fig. 18 we also find that µA

3 is a small value
and nearly invariant to the size of the testing tensor. We adopt
the following experiment to investigate the value of µA

3 (L0).
We produce the random testing tensors A ∈ Rn1×n4×n3 with
rankt(A) = b0.4 max(n1, n4)c and L0 ∈ Rn1×n2×n3 with
rankt(L0) = b0.2 max(n1, n2)/ log(max(n1, n2))c as follows.
For more simplicity, let n3 = 50 and n4 = n2 = n1 = n
which varies in [100, 2400]. We first produce 5 small tensors
Bi ∈ Rn1×0.08n2×n3 (i = 1, · · · , 5) and another 5 tensors
Ci ∈ R0.08n2×0.2n2×n3 (i = 1, · · · , 5). Note that the en-
tries in Bi and Ci are drawn from i.i.d. N (0, 1). Then let
Ai = Bi ∗ Ci ∈ Rn1×0.2n2×n3 (i = 1, · · · , 5) and we
further arrange Ai along the 2nd dimension to construct A =
[A1, · · · ,A5] ∈ Rn1×n2×n3 . When producing L0, we employ
similar strategy. That is, we first produce small tensors Gi ∈
Rn1×b0.04n2/ log(n2)c×n3 and Hi ∈ Rb0.04n2/ log(n2)c×0.2n2×n3

(i = 1, · · · , 5). However, the lateral slices in Gi are randomly
selected from the lateral slices in Bi to satisfy PUA(U0) = U0.
Then we compute L0 = [G1∗H1, · · · ,G5∗H5] ∈ Rn1×n2×n3 .
Finally, we normalize A and L0 such that ‖A‖∞ = 1 and
‖L0‖∞ = 1. By plotting the values of µA

3 (L0), we can easily
observe that µA

3 (L0) is a small value and does not vary markedly
when the tensor size varies. Note that µA

3 (L0) is only used in step
[(1) Bound ‖F1‖∞] in the proof of Lemma 11.

4.2 Properties of DFT on Tensors
Since the tensor nuclear norm is defined on the Fourier domain and
in the proofs we will use some important properties of Discrete
Fourier transformation (DFT), we introduce it first. The Fourier
transformation on v ∈ Rn3 is given as

v̄ = Fn3v ∈ Cn3 ,

100 200 400 800 1600 2400
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µ 3A
(L

0)

n

Fig. 18: Investigating the value of µA
3 when the size of the random

testing tensor varies.

where Fn3
is the DFT matrix defined

Fn3 =


1 1 1 · · · 1
1 ω ω2 · · · ωn3−1

...
...

...
. . .

...
1 ωn3−1 ω2(n3−1) · · · ω(n3−1)(n3−1)

∈Cn3×n3 ,

where ω = e−
2πc
n3 is a primitive n3-th root of unity in which

c =
√
−1. Note that Fn3

/
√
n3 is an orthogonal matrix, i.e.,

F ∗n3
Fn3

= Fn3
F ∗n3

= n3In3
. (24)

Thus F−1
n3

= F ∗n3
/n3. When conducting DFT on a tensor

B ∈ Rn1×n2×n3 , it actually performs the DFT on all the tubes of
B, i.e. B̄(i, j, :) = F n3B(i, j, :) ∀(i, j). Then, we have

(F n3 ⊗ In1) · bcirc(B) · (F−1
n3
⊗ In2) = B̄,

where ⊗ denotes the Kronecker product and (F n3 ⊗ In1)/
√
n3

is orthogonal. By using (22), we have the following properties [5]
which will be used frequently:

‖B‖2F =
1

n3
‖B̄‖2F , (25)

〈B,C〉 =
1

n3
〈B̄, C̄〉. (26)

5 PROOFS OF THEOREM 2

Proof. Let x(t) = vec(X (t)) and Xt = squeeze(X (t)). Then,
we can obtain

x(t) =

Xte1

...
Xten3

 ,
where ej ∈ Rn3 is the matrix column basis whose j-th entry
is 1 and the rest is 0. On the other hand, we define a tensor
A ∈ Rn1×p′×n3 where A(t) = ivec(A(:, t)) (t = 1, · · · , p′).
Also let At = squeeze(A(t)) ∈ Rn1×n3 (t = 1, · · · , p′).
Then we can rewrite x(t) = Az(t) as its equivalent form:Xte1

...
Xten3

 =

A1e1 · · · Ap′e1

...
. . .

...
A1en3 · · · Ap′en3

 z(t). (27)
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Since the i-th Fourier basis fj =
∑n3

s=1 ω
(s−1)(j−1)es and

Xtes = [A1es, · · · ,Ap′es]z(t) from Eqn. (25), we have

Xtfj =
n3∑
s=1

ω(s−1)(j−1)Xtes

=
n3∑
s=1

ω(s−1)(j−1)[A1es, · · · ,Ap′es]z(t)

= [A1, · · · ,Ap′ ]
n3∑
s=1

ω(s−1)(j−1)

es . . .
es

 z(t)

= [A1, · · · ,Ap′ ]

fj . . .
fj

 z(t)

= [A1fj , · · · ,Ap′fj ]z(t). (28)

For j = 1, · · · , n1, Eqn. (26) holds. We further define

Afi = [A1fi, · · · ,Ap′fi] ∈ Rn1×n3

and a tensor Z̄ ∈ Rp
′×n2×n3 where

Z̄(:, t, j) = z(t) ∈ Rp
′

(j = 1, · · · , n3). (29)

Therefore, we can compute a tensor Z = ifft(Z̄, [], 3). Note
that when conducting DFT on A, we have

Ā =

Af1
. . .

Afn3

 .
Therefore, as for the DFT result X (:, t, :) of X (:, t, :), we can
establish

X (:, t, :) =

Xtf1
. . .

Xtfn3


=

Af1
. . .

Afn3

[z(t)

. . .
z(t)

]
=ĀZ(:, t, :).

(30)

So for any z(t), we have

X (t) = A ∗Z(t), (t = 1, · · · , n2). (31)

Conversely, for any tensor linear representation (29), Z(t) may not
satisfy Eqn. (27). This means that there may not exist z(t) such
that x(t) = Az(t) holds. Thus, if the linear representation rela-
tionship in vector space holds, then there exists feasible solution
such that the tensor linear representation also holds. Conversely, it
does not holds.

6 PROOFS OF THEOREM 3
Before proving Theorem 3, we first give two lemma which is used
in the proofs.

Lemma 2. Assume that UA ∗ SA ∗ V∗A and U0 ∗ S0 ∗ V∗0
is the skinny t-SVDs of A and L0, respectively. Suppose that
PUA(U0) = U0. Then,

Z? = A† ∗L0,

is the minimizer to the noiseless TLRR (9) (in manuscript).

We defer the proof of Lemma 2 to Sec. 6.2. By Lemma 2, we
can obtain the closed-form solution to problem (9).

Lemma 3. Assume that C ∈ Rn1×n2×n3 , D ∈ Rn
′
1×n

′
2×n3 ,

Q ∈ Rn
′
1×n2×n3 , and R ∈ Rn1×n′

2×n3 are four arbitrary
tensors. Let

H=

[
C R
Q D

]
∈ R(n1+n′

1)×(n2+n′
2)×n3

and

F =

[
C 0
0 D

]
∈ R(n1+n′

1)×(n2+n′
2)×n3 .

Then we have

‖H‖∗ ≥ ‖F‖∗ = ‖C‖∗ + ‖D‖∗.

See its proof in Sec. 6.2. Actually this conclusion also holds
when the 3rd dimension is one, i.e. n3 = 1.

6.1 Proofs of Theorem 3
Now we are ready to prove Theorem 3.

Proof. Assume that Z is an arbitrary optimal solution of noise-
lessness TLRR (model (9) in manuscript). Then we decompose Z
as C + H, where C is a block-diagonal tensor and defined as

C(i, j, :) =


Z(i, j, :), if A(:, i, :) and X (:, j, :) are drawn

from the same tensor subspace;

0, otherwise.

Now suppose that X (:, i, :) belongs to the p-th tensor subspace
Kp. We further denote K′p =

⊕
i6=pKi. Then by the definition of

C and H, we know that A ∗C(:, i, :) ∈ Kp, A ∗H(:, i, :) ∈ K′p
and A ∗H(:, i, :) 6∈ Kp. However, we have A ∗H(:, i, :) =
A ∗Z(:, i, :)−A ∗ C(:, i, :) = X (:, i, :)−A ∗ C(:, i, :) ∈ Kp.
On the other hand, since K1, · · · ,Kk are independent to each
other, Kp

⋂(⊕
i 6=pKi

)
= 0. Thus, we have A∗H(:, i, :) = 0.

Accordingly, we have A ∗ C = X . So C is also a feasible
solution to noiselessness TLRR. On the other hand, by Lemma 3,
we have ‖C‖∗ ≤ ‖Z‖∗. By Lemma 2, the optimal solution
is unique and hence has block-diagonal structure. Moreover,
conducting DFT would not destroy the structure, and thus each
frontal slice Z̄(i) of Z̄ is block-diagonal.

6.2 Proofs of Some Lemmas
6.2.1 Proofs of Lemma 2
Before our proof, we first introduce a lemma, which will be used
later. Consider the following matrix LRR [6]:

min
Z
‖Z‖∗, s.t. L = AZ, (32)

where L is the clean data, A is a dictionary, and Z is the
representation coefficient matrix of L under dictionary A. Then
the following lemma analyzes the solution to problem (30).

Lemma 4. [6] Assume A 6= 0 and L = AZ have feasible
solution(s), i.e., PUA

(UZ) = UZ , where UA and UZ are the
column subspaces of A and Z, respectively. Then,

Z = A†L,

is the unique minimizer to problem (30), where A† is the pseudo
inverse of A.
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Now we begin to prove Lemma 2.

Proof. Firstly, problem (31)

min
Z
‖Z‖∗, s.t. L = A ∗Z, (33)

is equivalent to

min
Z̄

1

n3
‖Z̄‖∗, s.t. L̄ = ĀZ̄. (34)

Since L̄, Ā, and Z̄ are three block-diagonal matrices, problem
(32) can be divided into n3 smaller problems.

min
Z̄(i)

1

n3
‖Z̄(i)‖∗, s.t. L̄(i) =Ā(i)Z̄(i), (i = 1, · · ·, n3). (35)

Since PUA(U0) = U0, we have PŪ(i)(Ū
(i)
0 ) = Ū

(i)
0 , where

Ū
(i)
A and Ū

(i)
0 are the column spaces of Ā(i) and Z̄(i), respec-

tively. Thus, by Lemma 4, we know that Z̄(i) = (Ā(i))†L̄(i) is
the unique optimal solution to problem (33). Hence, we can obtain
the unique solution Z̄ = (Ā)†L̄ to problem (32). Furthermore,
the unique solution to problem (31) is Z = A† ∗L. The proof is
completed.

6.2.2 Proofs of Lemma 3

To prove Lemma 3, we first introduce a well-known lemma.

Lemma 5. [6], [7] Assume that C, D, Q, and R are four
arbitrary matrices of appropriate sizes. Then we have∥∥∥∥[C R

Q D

]∥∥∥∥
∗
≥
∥∥∥∥[C 0

0 D

]∥∥∥∥
∗

= ‖C‖∗ + ‖D‖∗.

Now we start to prove Lemma 3.

Proof. According to tensor nuclear norm definition and Lemma 3,
we have

‖H‖∗ =
1

n3

n3∑
i=1

‖H̄(i)‖∗

=
1

n3

n3∑
i=1

∥∥∥∥∥
[
C̄

(i)
R̄(i)

Q̄(i) D̄
(i)

]∥∥∥∥∥
∗

≥ 1

n3

n3∑
i=1

∥∥∥∥∥
[
C̄

(i)
0

0 D̄
(i)

]∥∥∥∥∥
∗

=
1

n3

n3∑
i=1

∥∥∥F̄ (i)
∥∥∥
∗

= ‖F‖∗ .

Besides, we can also establish

‖F‖∗ =
1

n3

n3∑
i=1

∥∥∥∥∥
[
C̄

(i)
0

0 D̄
(i)

]∥∥∥∥∥
∗

=
1

n3

n3∑
i=1

(∥∥∥C̄(i)
∥∥∥
∗

+
∥∥∥D̄(i)

∥∥∥
∗

)
=‖C‖∗ + ‖D‖∗.

Thus, the conclusion holds.

7 PROOFS OF THEOREM 4
Now we prove Theorem 4 in manuscript. Sec. 7.1 proves the dual
conditions of the TLRR problem (problem (2) in the manuscript).
Sec. 7.2 provides a way to construct the dual certificates such that
the dual conditions hold. Sec. 7.3 gives the proofs of some lemmas
which are used in Sec. 7.2.

Before we prove Theorem 4, we first give two lemmas that are
commonly used in the proofs.

Lemma 6. Based the definitions in Sec. 4, we have

(a) VA ∗ VA
∗ ∗ U = U ,

(b) V ∗ V∗ = V0 ∗ V∗0,
(c) A ∗ U = L0 ∗ V ∗ S† ∈ PU0

,

(d) (A∗)† ∗ U ∗ V∗ ∈ PT A
0
,

(e) A ∗PT (·) ∈ PT A
0
,

(f) PT (A∗(·)) = PT

(
A∗ ∗PT A

0

)
.

If A further obeys that the rank of Ā(i) (i = 1, · · · , n3) are
equal to each other, then

(g) A ∗A† = UA ∗ U∗A.

We defer the proof of Lemma 6 to Sec. 7.3.

Lemma 7. We have

‖PT A
0

(eijk)‖2F ≤
2µAr

n(2)n3
,

where µA = max
(
µ2(L0), µA

1 (L0)
)
.

See its proof in Sec. 7.3.

7.1 Dual Conditions
Lemma 8. (Dual conditions for T-LRR) Assume PUA(U0) =
U0 and ‖PT APΩ‖ < 1. Then (Z?,E?) = (A† ∗ L0,E0) is
the unique optimal solution to the T-LRR problem, provided that
there are a pair (W ,F) obeying

U ∗ V∗ + W = λA∗ ∗ (sgn (E0) + F) ,

PT (W) = 0, ‖W‖ < 1,

PΩ(F) = 0, ‖F‖∞ < 1.

Proof. Assume that (Z ′,E ′) = (A† ∗ L0 + H1,E0 −H2) is
also an optimal solution to the T-LRR problem. First, we have

A ∗
(
A† ∗L0 + H1

)
+ E0 −H2

=PUA(L0) + A ∗H1 + E0 −H2

=L0 + E0 + A ∗H1 −H2.

On the other hand, (Z ′,E ′) obeys the constraint Z ′+E ′ = X =
L0 + E0. So we can obtain A ∗H1 = H2.

We then recall that the subgradient of tensor nuclear and `1
norms are as follows:

∂Z?
‖Z‖∗ = {U ∗ V∗ + Ŵ , | PT (Ŵ) = 0, ‖Ŵ‖ ≤ 1},

∂E?‖E‖1 = {sgn (E0) + Ĥ, | PΩ(Ĥ) = 0, ‖Ĥ‖∞ ≤ 1}.

Since the nuclear and the operator norms are dual, there ex-
ists a tensor Ŵ ∈ PT ⊥ such that 〈Ŵ ,PT ⊥(H1)〉 =
‖PT ⊥(H1)‖∗ and ‖Ŵ‖ ≤ 1. Then similarly, thanks to the



7

duality between the `1 and `∞ norms, we can pick a Ĥ ∈ PΩ⊥

such that 〈Ĥ,PΩ⊥(H2)〉 = −‖PΩ⊥(H2)‖1. Then by the
convexity of tensor nuclear and `1 norms, we have

‖Z ′‖∗ + λ‖E ′‖1 − ‖Z?‖∗ − λ‖E?‖1
≥〈U ∗ V∗ + Ŵ ,Z ′ −Z?〉+ λ〈sgn (E0) + F̂ ,E ′ − E?〉
=〈U ∗ V∗ + Ŵ ,H1〉 − λ〈sgn (E0) + F̂ ,H2〉
=〈U ∗ V∗ − λA∗ ∗ sgn (E0) ,H1〉+ 〈Ŵ ,H1〉 − λ〈F̂ ,H2〉
=〈λA∗ ∗F −W ,H1〉+ ‖PT ⊥(H1)‖∗ + λ‖PΩ⊥(H2)‖1
=λ〈F ,H2〉 − 〈W ,H1〉+ ‖PT ⊥(H1)‖∗ + λ‖PΩ⊥(H2)‖1
≥λ(1− ‖F‖∞)‖PΩ⊥(H2)‖1 + (1− ‖W‖)‖PT ⊥(H1)‖∗.

Since both (Z?,E?) and (Z ′,E ′) are optimal, ‖Z ′‖∗ +
λ‖E ′‖1−‖Z?‖∗−λ‖E?‖1 = 0. Therefore, ‖PΩ⊥(H2)‖1 = 0
and ‖PT ⊥(H1)‖∗ = 0. That is, we have H2 ∈ PΩ and
H1 ∈ PT . Since H2 = A ∗H1, we have H2 ∈ PT A

0
. But

‖PT A
0
PΩ‖ < 1 implies PT A

0
∩ PΩ = {0}. Thus, we have

H2 = 0 and therefore H1 = 0. Thus the proof is completed.

Lemma 8 implies that if we can find a dual certificate obeying

(a) PΩ(F) = 0,

(b) U ∗ V∗ = λPT (A∗ ∗ (sgn (E0) + F)) ,

(c) ‖F‖∞ < 1,

(d) λ‖PT ⊥ (A∗ ∗ (sgn (E0) + F)) ‖ < 1,

(36)

then we can exactly recover the low-rank tensor L0 and sparse
noise E0.

7.2 Dual Certification via the Least Squares
Before we construct the dual certificate F , we first give some key
lemmas which will be used in the construction process.

Lemma 9. Assume Ω ∼ Ber(ρ). Then with a probability at least
1− 2(n(1)n3)−8,∥∥∥∥PT A

0
− 1

ρ
PT A

0
PΩPT A

0

∥∥∥∥ ≤ ε,
provided that ρ ≥ 48µAr log(n(1)n3)/(ε2n(2)n3).

See its proof in Sec. 7.3.

Corollary 1. Suppose Ω ∼ Ber(ρ). Then with a probability at
least 1− 2(n(1)n3)−8,

‖PΩPT A
0
‖2 ≤ (1− ρ)ε+ ρ < 1,

provided that 1− ρ ≥ 48µAr log(n(1)n3)/(ε2n(2)n3).

See its proof in Sec. 7.3.

Lemma 10. [3] For the Bernoulli sign variable M = sgn (E0)
distributed as

Mijk =


1, w.p. ρ/2,
0, w.p. 1− ρ,
−1, w.p. ρ/2,

(37)

there exists a monotone increasing function ϕ(ρ) on ρ ∈ [0, 1],
which also satisfies lim

ρ→0+
ϕ(ρ) = 0, such that the following

statement holds with high probability,

‖M‖ ≤ ϕ(ρ)
√
n1n3.

Lemma 11. Suppose that the assumptions in Theorem 4 are
satisfied. Then, the constructed F defined as

F = PΩ⊥PT A
0
G
(

1

λ
(A∗)† ∗ U ∗ V∗ −PT A

0
(sgn (E0))

)
,

where G =
∑+∞
k=0(PT A

0
PΩPT A

0
)k, obeys the dual condi-

tions (34).

Proof. Note that by Corollary 1, we have ‖PT A
0
PΩPT A

0
‖ =

‖PΩPT A
0
‖2 < 1. Thus, F is well defined. Now we verify the

four conditions in (34) in turn.
Proof of (34) (a): It is easy to verify that F ∈ PΩ⊥ .
Proof of (34) (b): For brevity, we define

R =

(
1

λ
(A∗)† ∗ U ∗ V∗ −PT A

0
(sgn (E0))

)
.

Now we give an useful equality which will be used later:

PT

(
A∗ ∗PT A

0
(F)

)
=PT

(
A∗ ∗PT A

0
PΩ⊥PT A

0
G(R)

)
=PT

(
A∗ ∗PT A

0
(I −PΩ)PT A

0
G(R)

)
=PT

(
A∗ ∗PT A

0
(I −PT A

0
PΩPT A

0
)G(R)

)
=PT

(
A∗ ∗PT A

0
(G −PT A

0
PΩPT A

0
G)(R)

)
=PT

(
A∗ ∗PT A

0

(
1

λ
(A∗)† ∗ U ∗ V∗ −PT A

0
(sgn (E0))

))
¬
=PT

(
1

λ
VA ∗ VA

∗ ∗ U ∗ V∗ −A∗ ∗PT A
0

(sgn (E0))

)

=

1

λ
U ∗ V∗ −PT

(
A∗ ∗PT A

0
(sgn (E0))

)
,

where ¬ holds because (A∗)† ∗ U ∗ V∗ ∈ PT A
0

and  holds
because of VA ∗ VA

∗ ∗ U = U . Thus, we can further establish

λPT (A∗ ∗ (sgn (E0) + F))

=λPT

(
A∗ ∗PT A

0
(sgn (E0) + λF)

)
=λPT

(
A∗ ∗PT A

0
(sgn (E0))

)
+ λPT

(
A∗ ∗PT A

0
(F)

)
=U ∗ V∗.

So F obeys the condition (34) (b).
Proof of (34) (c): Assume that F1 = PΩ⊥PT A

0
G (sgn (E0))

and F2 = 1
λPΩ⊥PT A

0
G
(
(A∗)† ∗ U ∗ V∗

)
. Then we have

F = F2 − F1. Hence, if we can bound ‖F1‖∞ and ‖F2‖∞,
then we can bound ‖F‖∞ ≤ ‖F1‖∞ + ‖F2‖∞. Now we try to
bound ‖F1‖∞ and ‖F2‖∞ in turn.
(1) Bound ‖F1‖∞.
Observe that

F1 = PΩ⊥PT A
0
G(M).

where M = sgn (E0) defined in Eqn. (35) is the Bernoulli sign
variable. Now for (i, j, k) ∈ Ωc,

F1
ijk = 〈GPT A

0
(eijk),M〉 := 〈Q(i, j, k),M〉.

Conditional on Ω = supp(M), the signs of M are indepen-
dent and identically distributed symmetric, and the Hoeffding’s
inequality gives

P
(
|F1

ijk| ≥ ε|Ω
)
≤ 2 exp

(
− ε2

2‖Q(i, j, k)‖2F

)
,
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and

P

(
sup
i,j,k
|F1

ijk|≥ε|Ω
)
≤2n1n2n3 exp

(
− ε2

2 supi,j,k‖Q(i, j, k)‖2F

)
.

By Lemma 1, we have ‖PΩPT A
0
‖ ≤ σ =

√
ρ+ ε(1− ρ). By

using Lemma 7, we have

‖PΩPT A
0

(eijk)‖F ≤‖PΩPT A
0
‖‖PT A

0
(eijk)‖F

≤σ
√

2µAr

n(2)n3
,

on the event {‖PΩPT A
0
‖ ≤ σ}. On the same event, we have

‖G‖ ≤ 1
1−σ2 and thus ‖Q(i, j, k)‖2F ≤ 2σ2

(1−σ2)2
µAr
n(2)n3

. Then,
unconditionally,

P

(
sup
i,j,k
|F1

ijk| ≥ ε
)

≤2n1n2n3 exp

(
−

(1− σ2)2n(2)n3ε
2

4σ2µAr

)
+P(‖PΩPT A

0
‖ ≥ σ).

So when r ≤ c4(1−σ2)2ε2n(2)n3/(4σ
2µA log(n(1)n3)) where

c4 is a constant, then we have

P
(
‖F1‖∞ < ε

)
≤1− 2n2−c4

(1) n1−c4
3 − P(‖PΩPT A

0
‖ ≥ σ)

≤1− 2n2−c4
(1) n1−c4

3 − 2(n(1)n3)−8.

Thus, by choosing an appropriate constant c4 = 10, ‖F1‖∞ < ε
holds with a probability at least 1− 4(n(1)n3)−8.
(2) Bound ‖F2‖∞.
Let Q = PT A

0
G
(
(A∗)† ∗ U ∗ V∗

)
. Then F2 = 1

λPΩ⊥(Q).
First, we give an inequality:

‖Q‖∞
= max

ijk

〈
PT A

0
G
(

(A∗)† ∗ U ∗ V∗
)
, eijk

〉
= max

ijk

〈
(A∗)† ∗ U ∗ V∗,GPT A

0
(eijk)

〉
= max

ijk

∑
b

〈
(A∗)† ∗ U ∗ V∗ ∗ e̊b,GPT A

0
(eijk) ∗ e̊b

〉
≤max

ijk

∑
b

∥∥∥(A∗)† ∗ U ∗ V∗ ∗ e̊b∥∥∥
F

∥∥∥GPT A
0

(eijk) ∗ e̊b
∥∥∥
F

≤max
ijk

∑
b

∥∥∥(A∗)† ∗ U ∗ V∗∥∥∥
2,∞

∥∥∥GPT A
0

(eijk) ∗ e̊b
∥∥∥
F

= max
ijk

∥∥∥(A∗)† ∗ U ∗ V∗∥∥∥
2,∞

∥∥∥GPT A
0

(eijk)
∥∥∥
F

≤max
ijk

∥∥∥(A∗)† ∗ U ∗ V∗∥∥∥
2,∞
‖G‖

∥∥∥PT A
0

(eijk)
∥∥∥
F

≤ 1

1− σ2

√
2µAr

n(2)n3

∥∥∥(A∗)† ∗ U ∗ V∗∥∥∥
2,∞

.

By substituting µA
3 (L0) into the above inequality, we further

obtain

‖F2‖∞ =‖ 1

λ
PΩ⊥(Q)‖∞

≤ 1

λ
‖Q‖∞

≤ κA

λ(1− σ2)

√
2µAµA

3 r log(n(1)n3)

n1n2n2
3

≤1− ε,

where the last inequality holds because we require

λ ≥ κA

(1− ε)(1− σ2)

√
2µAµA

3 r log(n(1)n3)

n1n2n2
3

,

which is consistent with λ = 1/
√
n(1)n3. So the condition (34)

(c) is also satisfied.
Proof of (34) (d): We first give some useful equalities and
inequalities.

PT ⊥

(
A∗ ∗PT A

0
PΩ⊥PT A

0
G
(

(A∗)† ∗ U ∗ V∗
))

=PT ⊥

(
A∗ ∗PT A

0
(I −PΩ)PT A

0
G
(

(A∗)† ∗ U ∗ V∗
))

=PT ⊥

(
A∗∗PT A

0
(I −PT A

0
PΩPT A

0
)G
(

(A∗)† ∗ U ∗ V∗
))

=PT ⊥

(
A∗ ∗PT A

0

(
(A∗)† ∗ U ∗ V∗

))
=PT ⊥(U ∗ V∗)
=0,

where the last second equality holds because (A∗)† ∗ U ∗ V∗ ∈
PT A

0
and VA ∗VA

∗ ∗U = U . Hence, we can further establish

λPT ⊥ (A∗ ∗ (sgn (E0) + F))

=PT ⊥

(
A∗ ∗PΩ⊥PT A

0
G
(

(A∗)† ∗ U ∗ V∗
))

+ λPT ⊥

(
A∗ ∗ (I −PΩ⊥PT A

0
GPT A

0
) (sgn (E0))

)
=PT ⊥

(
A∗ ∗ (PT A

0
+PT A⊥

0
)PΩ⊥PT A

0
G
(

(A∗)† ∗ U ∗ V∗
))

+ λPT ⊥

(
A∗ ∗ (I −PΩ⊥PT A

0
GPT A

0
) (sgn (E0))

)
=PT ⊥

(
A∗ ∗PT A⊥

0
PΩ⊥PT A

0
G
(

(A∗)† ∗ U ∗ V∗
))

+ λPT ⊥

(
A∗ ∗ (I −PΩ⊥PT A

0
GPT A

0
) (sgn (E0))

)
=PT ⊥

(
A∗ ∗PT A⊥

0
(I −PΩ)PT A

0
G
(

(A∗)† ∗ U ∗ V∗
))

+ λPT ⊥

(
A∗ ∗ (I −PΩ⊥PT A

0
GPT A

0
) (sgn (E0))

)
=PT ⊥

(
A∗ ∗PT A⊥

0
PΩPT A

0
G
(

(A∗)† ∗ U ∗ V∗
))

+ λPT ⊥

(
A∗ ∗ (I −PΩ⊥PT A

0
GPT A

0
) (sgn (E0))

)
.

Thus, we have

‖λPT ⊥(A∗ ∗ (sgn (E0) + F))‖

=
∥∥∥PT ⊥

(
A∗ ∗PT A⊥

0
PΩPT A

0
G
(

(A∗)† ∗ U ∗ V∗
))∥∥∥

+ λ
∥∥∥PT ⊥

(
A∗ ∗ (I −PΩ⊥PT A

0
GPT A

0
) (sgn(E0))

)∥∥∥
≤‖A‖‖PΩPT A

0
‖‖G‖‖A†‖ +λ‖A‖ (‖I‖+ ‖G‖) ‖sgn(E0)‖

≤ σ

1− σ2
κA+

2− σ2

1− σ2
λϕ(ρ)

√
n(1)n3‖A‖

¬
<1,

where ¬ holds because we require

λ <
1− σ2

ϕ(ρ)(2− σ2)
√
n(1)n3‖A‖

(
1− σκA

1− σ2

)
.
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Let ρ ≤ (
√

4κA + 1 − 1)2/(4(κA)2) − ε, then we have 1 −
σκA/(1 − σ2) > 0. Since ϕ(ρ) is monotone increasing on ρ ∈
[0, 1] and lim

ρ→0+
ϕ(ρ) = 0, there must exist a constant ρ′ such that

(1− σ2)
(

1− σκA

1−σ2

)
ϕ(ρ′)(2− σ2)‖A‖ ≥ 1.

Accordingly, we have

ρ ≤ ρ∗ = min
(
ρ′, (

√
4κA + 1− 1)2/(4(κA)2)− ε

)
.

So we can set λ = 1/
√
n(1)n3. Thus, the condition (34) (d) is

also satisfied.
Checking the range of r: When we prove Corollary 1 and bound
‖F1‖∞ in Proof of (10) (c), we require

r ≤ min

(
ε2n(2)

48(1− ρ)µA log(n(1)n3)
,

5(1− σ2)2ε2n(2)

2σ2µA log(n(1)n3)

)
.

Thus, we have
r ≤

ρrn(2)

µA log(n(1)n3)
,

where ρr = ε2/(48(1−ρ)) is a constant. The proof is completed.

7.3 Proof of Some Lemmas
We first introduce Lemma 12 which will be used in the proofs of
Lemma 9.

Lemma 12. (Matrix (Operator) Bernstein Inequality) [8] Let
Xi ∈ Rd1×d2 (i = 1, · · · , s) be independent zero-mean,
matrix valued random variables. Suppose ‖Xi‖ ≤ ν and
max (‖

∑
i E [XiX

∗
i ] ‖, ‖

∑
i E [X∗iXi] ‖) ≤ ω. Then, for any

t ≥ 0, we have

P

[∥∥∥∥∥
s∑
i=1

Xi

∥∥∥∥∥ > t

]
≤ (d1 + d2)exp

(
− t2

2ω + 2
3νt

)
.

If t ≤ ω/ν, then

P

[∥∥∥∥∥
s∑
i=1

Xi

∥∥∥∥∥ > t

]
≤ (d1 + d2)exp

(
−3t2

8ω

)
.

7.3.1 Proof of Lemma 6
Proof. We prove (a)-(f) in turn. (a) Since U∗S∗V∗ = A†∗L0 =
VA ∗ S†A ∗ UA ∗ L0, U and VA span the same space. Hence,
we have VA ∗ VA

∗ ∗ U = U .
(b) Since U ∗ S ∗ V∗ = A† ∗ L0, we can obtain
Û (i)Ŝ(i)(V̂ (i))∗ = (Ā(i))†L̄

(i)
0 (i = 1, · · · , n3). So we can

further establish
V̂ (i)(V̂ (i))∗

=V̂ (i)(Ŝ(i))−1(Û (i))∗(Ā(i))†L̄
(i)
0

=((Ā(i))†L̄
(i)
0 )†(Ā(i))†L̄

(i)
0

=V̂
(i)
L0

(Ŝ
(i)
L0

)−1(Û
(i)
L0

)∗Û
(i)
A Ŝ

(i)
A (V̂

(i)
A )∗V̂

(i)
A (Ŝ

(i)
A )−1(Û

(i)
A )∗

Û
(i)
L0

Ŝ
(i)
L0

(V̂
(i)
L0

)∗

=V̂
(i)
L0

(V̂
(i)
L0

)∗.

Therefore we can obtain [V̂ (i), Ṽ (i)][V̂ (i), Ṽ (i)]∗ =

[V̂
(i)
L0
, Ṽ (i)][V̂

(i)
L0
, Ṽ (i)]∗, where Ṽ (i) ∈ Rn2×r−ri

obeys (V̂ (i))∗Ṽ (i) = 0 and (Ṽ (i))∗Ṽ (i) = I .

Thus, when we compute the skinny t-SVDs of L0 and
A† ∗ L0, we can let V̄

(i)
L0

= [V̂
(i)
L0
, Ṽ (i)] ∈ Rn2×r and

V̄ (i) = [V̂ (i), Ṽ (i)] ∈ Rn2×r. This is because the last ri
columns of V̄

(i)
L0

corresponding to ri zero singular values and
thus they can be constructed by the above method. Thus, we
can construct V̄ (i) by similar way. Therefore, we can obtain
V ∗ V∗ = V0 ∗ V∗0.
(c) Similarly to (b), we have V̂

(i)
A (Ŝ

(i)
A )−1(Û

(i)
A )∗L̄

(i)
0 =

Û (i)Ŝ(i)(V̂ (i))∗ (i = 1, · · · , n3). Therefore, we can establish
L̄

(i)
0 V̄ (i)(Ŝ(i))−1(Û (i))∗ = Û

(i)
A Ŝ

(i)
A (V̂

(i)
A )∗. So we have

A = L0 ∗ V ∗ S† ∗ U∗, i.e. A ∗ U = L0 ∗ V ∗ S†. Thus,
A ∗ U = L0 ∗ V ∗ S† ∈ PU0 holds.
(d) Since (A∗)† ∗ U ∗ V∗ = UA ∗ S†A ∗ VA

∗ ∗ U ∗ V∗, and
V ∗ V∗ = V0 ∗ V∗0, we have

PT A
0

(
(A∗)† ∗ U ∗ V∗

)
=U0 ∗ U∗0 ∗

(
UA ∗ S†A ∗ V

∗
A ∗ U ∗ V

∗
)

+ UA ∗ U∗A ∗
(
UA ∗ S†A ∗ V

∗
A ∗ U ∗ V

∗
)
∗ V0 ∗ V∗0

− U0 ∗ U∗0 ∗
(
UA ∗ S†A ∗ V

∗
A ∗ U ∗ V

∗
)
∗ V0 ∗ V∗0

=UA ∗ S†A ∗ V
∗
A ∗ U ∗ V

∗.

Hence, we can obtain (A∗)† ∗ U ∗ V∗ ∈ PT A
0

.
(e) Assume that Q is an arbitrary tensor of proper size. Then we
have

A ∗PT (Q)

=A ∗PU (Q) + A ∗PV(Q)−A ∗PUPV(Q)

=A ∗PU (Q) + A ∗PV0(Q)−A ∗PUPV0(Q)
¬
=PU0

(A ∗PU (Q)) + PUA(A ∗PV(Q))

−PU0
PV0

(A ∗PUPV(Q))

=PT A
0

(A ∗PT (Q)) ,

where ¬ holds because A ∗ U ∈ PU0
, PUA(U0) = U0 and

V ∗ V∗ = V0 ∗ V∗0. Hence, we have A ∗PT (Q) ∈ PT A
0

(·).
(f) Since by (c), we have PU0(A∗U) = A∗U . Thus, U∗∗A∗ =
U∗ ∗A∗ ∗ U0 ∗ U∗0 holds. Suppose that Q is an arbitrary tensor
of proper size. Then we can establish:

PT (A∗(Q))

=U ∗ U∗ ∗A∗ ∗Q + A∗ ∗Q ∗ V ∗ V∗

− U ∗ U∗ ∗A∗ ∗Q ∗ V ∗ V∗

=U ∗ U∗ ∗A∗ ∗PU0
(Q) + A∗ ∗PUAPV0

(Q) ∗ V ∗ V∗

− U ∗ U∗ ∗A∗ ∗PU0
PV0

(Q) ∗ V ∗ V∗

=PT

(
A∗ ∗PT A

0
(Q)

)
.

Hence, we have PT (A(·)) = PT

(
A∗ ∗PT A

0

)
.

(g) Since A further obeys that the rank of
Ā(i) (i = 1, · · · , n3) are equal to each other,
Ā(i)(Ā(i))† =

(
Ū

(i)
A S̄

(i)
A (V̄

(i)
A )∗

)(
V̄

(i)
A (S̄

(i)
A )†(Ū

(i)
A )∗

)
=(

Ū
(i)
A S̄

(i)
A (V̄

(i)
A )∗

)(
V̄

(i)
A (S̄

(i)
A )−1(Ū

(i)
A )∗

)
= Ū (i)(Ū (i))∗

(i = 1, · · · , n3). Thus we have A ∗A† = UA ∗ (UA)∗.
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7.3.2 Proof of Lemma 7

Proof. Firstly, we give an useful inequality:

‖PT A
0

(eijk)‖2F
=‖PU0

(eijk) + PUAPV0
(eijk)−PU0

PV0
(eijk)‖2F

=‖PU0
PV⊥

0
(eijk) + PUAPV0

(eijk)‖2F
≤‖PU0PV⊥

0
(eijk)‖2F + ‖PUAPV0(eijk)‖2F

≤‖PU0
(eijk)‖2F + ‖PUAPV0

(eijk)‖2F

≤µ2(L0)r

n1n3
+ ‖PUAPV0

(eijk)‖2F

=
µ2(L0)r

n1n3
+ 〈UA ∗ UA

∗ ∗ eijk ∗ V0 ∗ V∗0, eijk〉

=
µ2(L0)r

n1n3
+ 〈UA ∗ UA

∗ ∗ eijk, eijk ∗ V0 ∗ V∗0〉

=
µ2(L0)r

n1n3
+

1

n3
〈UA ∗ UA

∗ ∗ eijk, eijk ∗ V0 ∗ V∗0〉

≤µ2(L0)r

n1n3
+

1

n3
‖UA ∗ UA

∗ ∗ eijk‖F ‖eijk ∗ V0 ∗ V∗0‖F

=
µ2(L0)r

n1n3
+ ‖UA ∗ UA

∗ ∗ eijk‖F ‖eijk ∗ V0 ∗ V∗0‖F

≤µ2(L0)r

n1n3
+
µ2(A)rA

n1n3

µ1(L0)r

n2n3

=
µ2(L0)r

n1n3
+
µA

1 (L0)r

n2n3

≤ 2µAr

n(2)n3
,

where µA = max(µ2(L0), µA
1 (L0)).

7.3.3 Proof of Lemma 9

Proof. For any tensor Z , we can write

(ρ−1PT A
0
PΩPT A

0
−PT A

0
)Z

=
∑
ijk

(
δijk
ρ
− 1

)
〈eijk,PT A

0
(Z)〉PT A

0
(eijk)

:=
∑
ijk

Hijk(Z)

where Hijk : Rn1×n2×n3 → Rn1×n2×n3 is a self-adjoint
random operator with E[Hijk] = 0. Define the matrix operator
H̄ijk : B → B, where B = {B̄ : B ∈ Rn1×n2×n3} denotes the
set consisting of block diagonal matrices with the blocks as the
frontal slices of B̄, as

H̄ijk(Z̄)=

(
δijk
ρ
−1

)〈
eijk,PT A

0
(Z)

〉
bdiag

(
PT A

0
(eijk)

)
.

By the above definitions, we have ‖Hijk‖ = ‖H̄ijk‖
and ‖

∑
ijkHijk‖ = ‖

∑
ijk H̄ijk‖. Also H̄ijk is self-

adjoint and E[H̄ijk] = 0. To prove the result by the non-
commutative Bernstein inequality, we need to bound ‖H̄ijk‖

and ‖
∑
ijk E[H̄ijkH̄

∗
ijk]‖. For brevity, we define a set φ =

{Z̄ | ‖Z̄‖F ≤ 1}. Then, we have

∥∥H̄ijk

∥∥
= sup

φ

∥∥H̄ijk(Z̄)
∥∥
F

= sup
φ

∥∥∥∥(δijkρ −1

)〈
eijk,PT A

0
(Z)

〉
bdiag

(
PT A

0
(eijk)

)∥∥∥∥
F

= sup
φ

∥∥∥∥(δijkρ −1

)〈
PT A

0
(eijk),Z

〉
bdiag

(
PT A

0
(eijk)

)∥∥∥∥
F

≤ sup
φ

1

ρ

∥∥∥PT A
0

(eijk)
∥∥∥
F

∥∥∥bdiag(PT A
0

(eijk)
)∥∥∥

F
‖Z‖F

= sup
φ

1

ρ

∥∥∥PT A
0

(eijk)
∥∥∥2

F

∥∥Z̄∥∥
F

≤ 2µAr

ρn(2)n3
:= ν,

Note that E[(ρ−1δijk − 1)2] = ρ−1(1− ρ) ≤ ρ−1. Then we can
further obtain∥∥∥∥∥∥
∑
ijk

E[H̄ijkH̄
∗
ijk]

∥∥∥∥∥∥
≤1

ρ
sup
φ

∥∥∥∥∥∥
∑
ijk

〈
eijk,PT A

0
(Z)
〉〈
eijk,PT A

0
(eijk)

〉
bdiag

(
PT A

0
(eijk)

)∥∥∥∥∥∥
F

≤1

ρ

√
n3 max

ijk
‖PT A

0
(eijk)‖2F

∥∥∥∥∥∥
∑
ijk

〈
eijk,PT A

0
(Z)

〉∥∥∥∥∥∥
F

=
1

ρ

√
n3 max

ijk

∥∥∥PT A
0

(eijk)
∥∥∥2

F

∥∥∥PT A
0

(Z)
∥∥∥
F

=
1

ρ

√
n3 max

ijk

∥∥∥PT A
0

(eijk)
∥∥∥2

F
‖PUAPT 0

(Z)‖F

≤1

ρ

√
n3 max

ijk

∥∥∥PT A
0

(eijk)
∥∥∥2

F
‖Z‖F

=
1

ρ
max
ijk

∥∥∥PT A
0

(eijk)
∥∥∥2

F

∥∥Z̄∥∥
F

≤ 2µAr

ρn(2)n3
:= ω.

Since ε is small, we have ω/ν = 1 > ε. By Lemma 12, we can
establish:

P
[∥∥∥∥PT A

0
− 1

ρ
PT A

0
PΩPT A

0

∥∥∥∥ > ε

]

=P

∥∥∥∥∥∥
∑
ijk

Hijk

∥∥∥∥∥∥ > ε


=P

∥∥∥∥∥∥
∑
ijk

H̄ijk

∥∥∥∥∥∥ > ε


≤(n1 + n2)n3 exp

(
−3

8
·
ε2ρn(2)n3

2µAr

)
.

Let ρ ≥ c3µAr log(n(1)n3)/(ε2n(2)n3). Then, the following
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inequality holds.

P
(∥∥∥∥PT A

0
− 1

ρ
PT A

0
PΩPT A

0

∥∥∥∥ ≤ ε)
=1− P

(∥∥∥∥PT A
0
− 1

ρ
PT A

0
PΩPT A

0

∥∥∥∥ > ε

)
≥1− (n1 + n2)n3 exp

(
−

3c3 log(n(1))

16

)
≥1− 2(n(1)n3)−

3
16 c3+1.

By choosing c3 = 48, we have P(‖PT A
0
− ρ−1PT A

0
PΩPT A

0
‖

≤ ε) ≥ 1− 2(n(1)n3)−8. The proof is completed.

7.3.4 Proof of Corollary 1
Proof. Since Ω⊥ ∼ Ber(1 − ρ), by Lemma 9, with a probability
at least 1− (n(1)n3)−8,∥∥∥∥PT A

0
− 1

1− ρ
PT A

0
PΩ⊥PT A

0

∥∥∥∥ ≤ ε,
provided that 1−ρ ≥ 48µAr log(n(1)n3)/(ε2n(2)n3). Note that
I = PΩ + PΩ⊥ , we have∥∥∥∥PT A

0
− 1

1− ρ
PT A

0
PΩ⊥PT A

0

∥∥∥∥
=

1

1− ρ

∥∥∥PT A
0
PΩPT A

0
− ρPT A

0

∥∥∥ .
Then, by the triangular inequality

‖PΩPT A
0
‖2 =‖PT A

0
PΩPT A

0
‖

≤‖PT A
0
PΩPT A

0
− ρPT A

0
‖+ ‖ρPT A

0
‖

≤(1− ρ)ε+ ρ.

Thus, the conclusion is established.

8 PROOFS OF THEOREM 5
Proof. Assume that the pair (Z?,E?) is the minimizer to the
TLRR problem (problem (2) in the manuscript). Then we have
Z? = A† ∗ (X − E?). Thus, there exists Z ′? such that Z? =
VA ∗Z ′?, where UA ∗SA ∗V∗A is the skinny t-SVD of A. On
the other hand, we have

‖Z?‖∗ = ‖VA ∗Z ′?‖∗

=
1

n3

n3∑
i=1

‖V̄ (i)
A (Z̄ ′?)

(i)‖∗

=
1

n3

n3∑
i=1

tr
(√

((Z̄ ′?)
(i))∗(V̄

(i)
A )∗V̄

(i)
A (Z̄ ′?)

(i)

)
¬
=

1

n3

n3∑
i=1

tr
(√

((Z̄ ′?)
(i))∗(Z̄ ′?)

(i)

)

=
1

n3

n3∑
i=1

‖(Z̄ ′?)(i))‖∗

= ‖Z ′?‖∗,

where ¬ holds since (V̄
(i)
A )∗ ∗ V̄ (i)

A = I . Thus, we can substitute
Z? = VA∗Z ′? into problem (2) in the manuscript and then obtain
its equivalent problem (13). Thus, if (Z ′?,E?) is an arbitrary
optimal solution to problem (13), then we can obtain the minimizer
(VA ∗Z ′?,E?) of problem (2).
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