
Efficient Meta Learning via Minibatch Proximal Update
Pan Zhou∗ Xiao-Tong Yuan† Huan Xu‡ Shuicheng Yan4 Jiashi Feng∗

∗ National University of Singapore, † Nanjing University of Information Science & Technology, ‡ Alibaba, 4 YITU Tech (pzhou@u.nus.edu xtyuan@nuist.edu.cn Huan.xu@alibaba-inc.com {eleyans,
elefjia}@nus.edu.sg)

h
o
m
e
p
age

Problem Setup

Problems: how to learn task-level knowledge from various observed tasks such that it could
facilitate new task learning, e.g. few-shot learning and new policy learning in RL?

Proposed Efficient Meta Learning via Minibatch Proximal Update (Meta-MinibatchProx)

Meta-MinibatchProx: it learns a good prior model w from observed tasks that is close to the
optimal models of new similar tasks, facilitating new task learning.

Training model: given a meta task distribution T , we consider the meta-learning model:

min
w

F (w) :=
1
n

∑n

i=1
min
wTi

{
LDTi

(wTi) +
λ

2
‖wTi −w‖2

2

}
. (1)

where each task T ∼ T only contains K training samples DTi = {(x i,y i)}; LDT(wT ) =
1
K

∑
(x ,y)∈DT

`(f (w ,x),y) denotes the empirical loss on DT with predictor f and loss `.

Inner level of intra-task learning: it finds the task-specific
optimal model parameter wT of task T around the prior w .

Outer level of inter-task learning: it uses optimal parameters
wT to tune w such that w is close to all wT in average.

small average distance to optimum
models of all tasks in expectation

Test model: given a task T ∼ T with K samples DT = {(x i,y i)}K
i=1, we adapt the prior model

w to task T by minimizing

min
wT
LDT(wT ) +

λ

2
‖wT −w‖2

2, (2)

Benefit: it requires a few data for adaptation, since prior model w is close to optimal model
of T in expectation as existing and new tasks are from the same distribution and are similar.

Advantages over MAML

Higher computational efficiency. Meta-MinibatchProx only computes the gradient (see
algorithm below) and is more efficient than MAML requiring Hessian computation.

More accurate solution to inner problem. MAML finds a good initialization w via

w∗T = w − η∇LDT(w) = argmin
wT

〈∇LDT(w),wT −w〉 +
1
2η
‖wT −w‖2

2.

Meta-MinibatchProx finds the task-specific optimal model by minimizing

w∗T = min
wT
LDT(wT ) +

λ

2
‖wT −w‖2

2 = min
wT
〈∇LDT(w),wT−w〉 +

λ

2
‖wT −w‖2

2

+
1
2
〈∇2LDT(w)(wT−w), (wT−w)〉+1

6
〈∇3LDT(w), (wT−w)⊗

3〉+· · ·

So Meta-MinibatchProx uses higher-order information of LDT beyond gradient to search.

More flexible regularization. Meta-MinibatchProx can handle different possible structures in
model parameter space by using proper `p,q-regularizer ‖wTi −w‖q

p, while MAML cannot due
to its fixed update rule. E.g., Meta-MinibatchProx could use `2,1-norm to handle outlier-tasks.

Stochastic Gradient Meta-Optimization

min
w

1
n

∑n

i=1
φDT(w) where φDT(w) = min

wT
LDT(wT ) +

λ

2
‖wT −w‖2

2. (3)

The difficulty in applying SGD is how to compute the gradient of meta loss φDT(w) w.r.t. w .

Stochastic gradient computation of φDT(w). Assume LDT is differentiable and w∗T =
argminwT

LDT(wT ) +λ
2‖wT − w∗‖2

2. Then the gradient of the meta-loss φDT(w) is given by
∇φDT(w) = λ(w −w∗T ).

Stochastic Gradient Meta-Optimization

In practice, we only approximately solve the inner problem: w∗T ≈ argminwT
LDT(wT ).

Algorithm 1: SGD for Meta-MinibatchProx
Input : Initial point w0, learning rate {ηs}.
for s = 0 to S − 1 do

Randomly select a mini-batch of tasks {Ti} of size bs from the observed n tasks.
for Ti ∈ {Ti}

Compute an εs-approximate stable minimizer ws
Ti

to the within-meta-task
problem minwTi

g(wTi) := LDTi
(wTi) + λ

2‖wTi −ws‖2
2 such that ‖∇g(ws

Ti
)‖2

2 ≤ εs.
end
Update the meta parameter ws+1 = ws − ηsλ(ws − 1

bs

∑bs
i=1 ws

Ti
).

end
Output : the parameter initialization wS of model f .

Convergence guarantees. Assume LDT(wT ) is differentiable and for each task, its
optimum w∗T = argminwT

LDT(wT ) + λ
2‖wT − w‖2

2 satisfies E[‖w∗T − w‖2
2] ≤ σ2. Let

w∗ = argminw F (w) and w∗sTi
= argminwTi

LDTi
(wTi) + λ

2‖wTi −ws‖2
2.

(1) Convex setting. Assume LDT(wT ) is convex. Then by setting ηs = 2
sλ, εs = c

S,
α = 8Sλ2σ2

S−1 + c(1 + 8
S−1)) with a constant c, we have

E[‖wS −w∗‖2
2] ≤ α

λ2S
and E

[∥∥∥1
n

∑n

i=1
w∗STi
−wS

∥∥∥2

2

]
≤ L2α

(λ + L)2S
.

(2) Non-convex setting. Assume LDT(wT ) is L-smooth. Then by setting λ > L,

ηs =
√

∆
γS, εs = c√

S
with γ = λ3L

(λ+L)

(
σ2 + c√

S(λ−L)2

)
and ∆ = F(w0)− F(w∗), we have

min
s

E[‖∇F(ws)‖2
2] = λ2 min

s
E
[∥∥∥1

n

∑n

i=1
w∗sTi
−ws

∥∥∥2

2

]
≤ 1√

S

[
4
√

∆γ +
2cλ2

(λ− L)2

]
.

Statistical Justification: Benefit of Prior Model in Meta Learning

Assume we have learned an optimal prior hypothesis w∗ = argminw F (w). Here we
view w∗ as a deterministic hypothesis.
For any T ∼ T and DT = {(x i,y i)}K

i=1 ∼ T , define the population solution as
w∗T ,E ∈ argmin

wT

{
L(wT ) := E(x ,y)∼T [`(f (wT ,x),y)]

}
and empirical solution in Meta-MinibatchProx as

w∗T = argmin
wT

LDT(wT ) +
λ

2
‖wT −w∗‖2

2.

Benefit of prior w∗ for new task learning. Suppose `(f (w ,x),y) is G-Lipschitz
continuous and convex w.r.t. w . Then we have

ET∼TEDT∼T
[
L(w∗T )− L(w∗T ,E)

]
≤
√

2G√
K

√
ET∼T

[
‖w∗−w∗T ,E‖2

]
.

Remark. Training model guarantees w∗ to be close to w∗T ,E in expectation.

First-order optimality. Suppose `(f (w ,x),y) is G-Lipschitz continuous and L-
smooth w.r.t. w . Then for λ > L, it holds that

ET∼T

[∥∥EDT∼T [∇L(w∗T )]
∥∥2
]
≤ 32G2L2

(λ−L)2K 2 +
8G2

(λ−L)βK
+

2
β
ET∼T [L(w∗)−L(w∗T )],

where β = 1
λ

[
1− L

2λ

]
is a constant.

Remark. w∗ helps obtain small gradient.

Comparison with Existing Works

Recently, Denevi et al. (2018, 2019) and Khodak et al. (2019) also consider
similar prior hypothesis biased regularized empirical risk minimization.

But Denevi et al. focus on convex linear models in contrast ours which is
developed for both convex and non-convex learning problems.

Different from online convex meta-learning framework developed in (Khodak
et al. 2019), we use a simple yet scalable paradigm within SGD for
stochastic meta-optimization which is particularly friendly for computational
and statistical complexity analysis in both convex and non-convex settings.

Experiments (code is available at https://panzhous.github.io/)

Few-shot regression.
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Few-shot classification.
Table 1: Few-shot classification accuracy (%) on miniImageNet.

method 1-shot 5-way 5-shot 5-way 1-shot 20-way 5-shot 20-way
Matching Net 43.56 ± 0.84 55.31 ± 0.73 17.31 ± 0.22 22.69 ± 0.20
Meta-LSTM 43.33 ± 0.77 60.60 ± 0.71 16.70 ± 0.23 26.06 ± 0.25

MAML 46.21 ± 1.76 61.12 ± 1.01 16.01 ± 0.52 18.34 ± 0.33
FOMAML 45.53 ± 1.58 61.02 ± 1.12 15.21 ± 0.54 17.67 ± 0.47

Reptile 47.07 ± 0.26 62.74 ± 0.37 18.27 ± 0.16 28.71 ± 0.19
Meta-MinibatchProx 48.51 ± 0.92 64.15 ± 0.92 20.50 ± 0.35 33.61 ± 0.41

MAML + Transduction 48.70 ± 1.84 63.11 ± 0.92 16.49 ± 0.58 19.29 ± 0.29
FOMAML + Transduction 48.07 ± 1.75 63.15 ± 0.91 15.80 ± 0.61 18.15 ± 0.43

Reptile + Transduction 49.97 ± 0.32 65.99 ± 0.58 18.76 ± 0.17 29.15 ± 0.22
Meta-MinibatchProx + Transduction 50.77 ± 0.90 67.43 ± 0.89 21.17 ± 0.38 34.30 ± 0.41

Table 2: Few-shot classification accuracy (%) on tieredImageNet.
method 1-shot 5-way 5-shot 5-way 1-shot 10-way 5-shot 10-way

Matching Net 34.95 ± 0.89 43.95 ± 0.85 22.46 ± 0.34 31.19 ± 0.30
Meta-LSTM 33.71 ± 0.76 46.56 ± 0.79 22.09 ± 0.43 35.65 ± 0.39

MAML 49.60 ± 1.83 66.58 ± 1.78 33.18 ± 1.23 49.05 ± 1.32
FOMAML 48.01 ± 1.74 64.07 ± 1.72 30.31 ± 1.12 46.54 ± 1.24

Reptile 49.12 ± 0.43 65.99 ± 0.42 31.79 ± 0.28 47.82 ± 0.30
Meta-MinibatchProx 50.14 ± 0.92 68.30 ± 0.91 33.68 ± 0.64 51.84 ± 0.65

MAML + Transduction 51.67 ± 1.81 70.30 ± 1.75 34.44 ± 1.19 53.32 ± 1.33
FOMAML + Transduction 50.12 ± 1.82 67.43 ± 1.80 31.53 ± 1.08 49.99 ± 1.36

Reptile + Transduction 51.06 ± 0.45 69.94 ± 0.42 33.79 ± 0.29 51.27 ± 0.31
Meta-MinibatchProx + Transduction 54.37 ± 0.93 71.45 ± 0.94 35.56 ± 0.60 54.50 ± 0.71

Outlier-Corrupted Tasks.
Assume there are a few outlier-tasks O = {To} whose optima {wo} are quite
far from the optima {ws} of inlier/normal-tasks S = {Ts}.

Here we add 5% outlier images with zero pixels into each training class in
miniImageNet. If a sampled task T contains these outlier images, it is an
outlier-task.

Meta-MinibatchProx uses the robust `2,1-norm
1
n

∑n
i=1 ‖wTi −w‖2 that tolerates relatively large

distances between w and {wo}.
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