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Problem Setup

Problems: how to learn task-level knowledge from various observed tasks such that it could
facilitate new task learning, e.g. few-shot learning and new policy learning in RL"?

Proposed Efficient Meta Learning via Minibatch Proximal Update (Meta-MinibatchProx)

Meta-MinibatchProx: it learns a good prior model w from observed tasks that is close to the
optimal models of new similar tasks, facilitating new task learning.

Training model: given a meta task distribution 7, we consider the meta-learning model:
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where each task T ~ T only contains K training samples Dr. = {(x;, ¥;)}; LpWT) =
% 2 x.y)en. L(f(W, x), y) denotes the empirical loss on D7 with predictor f and loss /.
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Stochastic Gradient Meta-Optimization

In practice, we only approximately solve the inner problem:

Comparison with Existing Works
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wi ~ argmin,  Lp (Wr).

Algorithm 1: SGD for Meta-MinibatchProx

Input :Initial point wy, learning rate {ns}.
fors=0toS—1do

for 7) c {T;}

end
Update the meta parameter ws™! = ws — n \(W®

Randomly select a mini-batch of tasks { T;} of size bs from the observed n tasks.

Compute an es-approximate stable minimizer w3 to the within-meta-task
problem miny, g(wr) := Lp, (Wr) + 5||wr, — w?||5 such that [|[Vg(w$)[5 < es.

end
Output :the parameter initialization w° of model f.

Recently, Denevi et al. (2018, 2019) and Khodak et al. (2019) also consider
similar prior hypothesis biased regularized empirical risk minimization.

But Denevi et al. focus on convex linear models in contrast ours which is
developed for both convex and non-convex learning problems.

Different from online convex meta-learning framework developed in (Khodak
et al. 2019), we use a simple yet scalable paradigm within SGD for
stochastic meta-optimization which is particularly friendly for computational
and statistical complexity analysis in both convex and non-convex settings.

Experiments (code is available at https://panzhous.github.io/)

Few-shot regression.
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algorithm below) and is more efficient than MAML requiring Hessian computation.

More accurate solution to inner problem. MAML finds a good initialization w via
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wr 2 i 2 1 ) n Lo (wo) \ | |2 MAML + Transduction 5167 +1.81 7030+1.75 3444+119  53.32+1.33

> B B 1T o3 e | w3 =argmin Lp(WT) + =||WT — W'||5. FOMAML + Transduction 50.12+1.82 67.43+1.80 3153+1.08  49.99 + 1.36

(VLo (W)(WT—W), (Wr—W))+o(V Lo (W), (WT—W)" )+ W ' 2 Reptile + Transduction 51.06 + 0.45 69.94 + 042 33.79+£0.29  51.27 + 0.31

Meta-MinibatchProx + Transduction 54.37 + 0.93 71.45 + 0.94 35.56 + 0.60 54.50 + 0.71

So Meta-MinibatchProx uses higher-order information of £p. beyond gradient to search.

More flexible regularization. Meta-MinibatchProx can handle different possible structures in
model parameter space by using proper ¢, 5-regularizer |wr — ng, while MAML cannot due
to its fixed update rule. E.g., Meta-MinibatchProx could use /> 1-norm to handle outlier-tasks.

Stochastic Gradient Meta-Optimization

A

Assume we have learned an optimal prior hypothesis w* =

view w* as a deterministic hypothesis.

argmin, F(w). Here we

Benefit of prior w* for new task learning. Suppose /(f(w, x), y) is G-Lipschitz

continuous and convex w.r.t. w. Then we have
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Remark. Training model guarantees w* to be close to w7 - in expectation.

Table 2: Few-shot classification accuracy (%) on tieredimageNet.

Outlier-Corrupted Tasks.

Assume there are a few outlier-tasks O = { T,} whose optima {w,} are quite
far from the optima {w} of inlier/normal-tasks S = { Ts}.

Here we add 5% outlier images with zero pixels into each training class in
minilmageNet. If a sampled task T contains these outlier images, it is an

outlier-task.

First-order optimality. Suppose /(f(w, x),y) is G-Lipschitz continuous and L-

smooth w.r.t. w. Then for A > L, it holds that
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where 3 = 1[1 — ] is a constant.

(3)
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minilmageNet+nontransduction
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I IminilmageNet+transduction
minilmageNet+outlier+nontransduction

minilmageNet+outlier+transduction
48.70

The difficulty in applying SGD is how to compute the gradient of meta loss ¢p(w) w.r.t. w. Meta-MinibatchProx uses the robust /> 1-norm
IS, llwr, — w2 that tolerates relatively large

distances between w and {w,}.

49 51 49.98
47.32

Tt [L(W?) = L(wrT)],

47.03

46.21

Stochastic gradient computation of ¢p (w). Assume Lp. is differentiable and w3 =
argmin,,_ Lp (wr) +5|wr — w*||5. Then the gradient of the meta-loss ¢p,(w) is given by
Vp, (W) = \(w — wy).

36.84 37.93

Classification Accuracy (%

Remark. w* helps obtain small gradient.
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