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Abstract

This supplementary document contains the technical proofs of convergence results
and some additional numerical results of the NIPS’19 submission entitled “Effi-
cient Meta Learning via Minibach Proximal Update”. It is structured as follows.
Appendix A shows the convergence of Algorithm 1 under very general assumptions
in Theorem 4 and also provides the excess risk analysis of the hypothesis transfer
in meta learning when the loss `(f(w,x),y) is non-convex in Theorem 5. Then
Appendix B gives the proofs of the main results in Sec. 3.2 including Lemma 1
and Theorem 1, and the convergence results in Appendix A , namely, Theorem 4.
Next, in Appendix C we presents the proofs of Theorems 2 and 3 in Sec. 3.3
and Theorem 5 in Appendix A. Finally, more experimental results on few-shot
regression task are presented in Appendix D.

A More Theoretical Results

A.1 Convergence Results under Very General Assumptions

We actually can show the convergence of Algorithm 1 under very general assumptions. For instance,
such results still hold when the loss LDT

(wT ) is not differentiable and not smooth, e.g. hinge loss or
involving `1 norm regularization.

Theorem 4. Assume learning rate satisfies ηs < 2
λ and ws

Ti
= argminwTi

LDTi
(wTi

) + λ
2 ‖wTi

−
ws‖22. Then the sequence {ws} produced by Algorithm 1 satisfies the following two properties.
(1) F(ws) is monotonically decreasing. Actually, it obeys

E
[
F(ws+1)− F(ws)

]
≤ λ

2

[
1− 2

ληs

]
E‖ws+1 −ws‖22 < 0.

(2) Assume F(w) is lower bounded, namely, infw F(w) > −∞. Then we have lims→+∞ E[‖ws+1−
ws‖2] = 0. Besides, in expectation, the accumulation point w∗ of the sequence {ws} is
a Karush–Kuhn–Tucker point to F(w). It also further satisfies E[w∗] = 1

n

∑n
i=1 w

∗
Ti

where
w∗Ti

= argminwTi
LDTi

(wTi
) + λ

2 ‖wTi
−w∗‖22.

See its proof in Appendix B.4. Theorem 4 shows that the sequence {ws} produced by Algorithm 1
can decrease the loss function F(w) monotonically. Besides, under the mild condition, we further
prove the accumulation point w∗ to the sequence {ws} converges to a Karush–Kuhn–Tucker point,
which guarantees the convergence performance of the proposed algorithm. The provable result
E[w∗] = 1

n

∑n
i=1 w

∗
Ti

also indicates E[w∗] = ETi∼p(T )w
∗
Ti

as the n tasks are sampled from task
set T according to p(T ), and thus implies that w∗ is close to the desired hypothesis of each task. So
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we only requires a few samples to adapt it to a new task drawn from T . Prior optimization based
meta learning approaches, such as MAML [1], FOMAML [1] and Reptile [2], only provide empirical
convergence results but lack of rigorous convergence guarantees stated in this work.

A.2 Statistical Justification: Benefit of Hypothesis Transfer in Meta Learning under
Non-convex Setting

Here we provide the excess risk analysis of the hypothesis transfer in meta learning when the
loss `(f(w,x),y) is non-convex. This result can show how the prior hypothesis transfer can be
beneficial to minibatch proximal update for future tasks, which theoretically justifies the advantage
of Meta-MinibatchProx for few-shot learning.

Theorem 5. Suppose `(f(w,x),y) is G-Lipschitz continuous and L-smooth w.r.t. w. For any
T ∼ T and DT = {(xi,yi)}Ki=1 ∼ T , we respectively let w∗T,E ∈ argminwT

{L(wT ) :=

E(x,y)∼T [`(f(wT ,x),y)]
}

and w∗T = argminwT
LDT

(wT )+ λ
2 ‖wT−w∗‖22, where LDT

(wT ) =
1
K

∑
(x,y)∈DT

`(f(wT ,x),y). Then for non-convex `(f(w,x),y), by setting λ > L it holds that

ET∼T EDT

[
L(w∗T )− L(w∗T,E)

]
≤ 4G2

(λ− L)K
+
λ

2
ET∼T

[
‖w∗ −w∗T,E‖2

]
.

The Proof of Theorem 5 can be found in Appendix C.4. From Theorem 5, one can obverse that
two important factors, namely the training sample number K for each task T ∼ T and the expected
distance ET∼T

[
‖w∗ −w∗T,E‖2

]
between the meta-regularizer w∗ provided by Meta-MinibatchProx

and the optimal population hypothesis w∗T,E for task T . Actually, those two factors play consistent
roles in deciding the excess risk as them in Theorem 2 for convex loss `(f(w,x),y). Specifically, if
K increases, then the first term in the upper bound becomes smaller. Moreover, the closer w∗ is to
w∗T,E , the better the updated hypothesis w∗T approaches to w∗T,E and thus enjoys better generalization
performance for a new task drawn from task set T in expectation.

A.3 Extension from Finite-sum Setting to Online Setting

Rigorously, as most experiments, e.g. image classification, have finite task number n though n may
be large, this work focuses on off-line setting. But all convergence and generalization guarantees in
this work also hold under online setting. So Meta-MinibatchProx actually has guarantees under both
settings.

We briefly introduce the proof extension from off-line setting to online setting. For conver-
gence, the auxiliary lemmas, e.g. Lemmas 1 ∼ 4, hold for both settings, as they provide cer-
tain results for each task loss LDTi

(wTi
) and do not involve off-line and online settings. Let

φDTi
(w) = minwTi

LDTi
(wTi

)+ λ
2 ‖wTi

−w‖22 and w∗Ti
= argminwTi

LDTi
(wTi

)+ λ
2 ‖wTi

−w‖22.
Then when extending Theorem 1 from off-line setting to online setting, the challenge is to ex-
tend (a) E[ 1

bs

∑bs
i=1 φDTi

(w)] = F (w) and (b) E[ 1
bs

∑bs
i=1∇φDTi

(w)] = ∇F (w) with F (w) =
1
n

∑n
i=1 φDTi

(w) under off-line setting to (a) and (b) with F (w) = ET∼T φDT
(w) for online setting.

By sampling mini-batch {Ti} as Ti ∼ T , then (a) and (b) hold for online setting. As tasks Ti, e.g.
in image classification, usually have uniform distribution T , we can uniformly sample task Ti. The
remaining proofs of off-line setting and online setting are the same. Similarly, we extend convergence
results in Theorem 4 in Appendix from off-line setting to online setting. For generalization, Theo-
rems 2 ∼ 4 still hold for online setting without any changes, as they provide performance of empiric
solution on K samples in any task T ∼ T on the expected risk and thus do not involve off-line and
online settings.

B Proof of The Results in Sec. 3.2

B.1 Auxiliary Lemmas

In this section, we introduce auxiliary lemmas which will be used for proving the results in Sec. 3.2.
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Lemma 2. Let the function h(x,y) : Ω1×Ω2 7→ R be µ-strongly convex with respect to its variables
(x, y) ∈ Ω1 × Ω2 for some µ ≥ 0. Then the function

φ(x) := min
y∈Ω2

h(x,y)

is µ-strongly convex.

Proof. Indeed, give θ ∈ [0, 1], x1,x2 ∈ Ω1

φ(x1) = min
y∈Ω2

h(x1,y) = h(x1,y1),

φ(x2) = min
y∈Ω2

h(x2,y) = h(x2,y2).

Let xθ = θx1 + (1− θ)x2 and yθ = θy1 + (1− θ)y2. Since h is µ-strongly convex,

h(xθ,yθ) ≤ θh(x1,y1) + (1− θ)h(x2,y2)− µ

2
θ(1− θ)

(
‖x1 − x2‖2 + ‖y1 − y2‖2

)
= θφ(x1) + (1− θ)φ(x2)− µ

2
θ(1− θ)

(
‖x1 − x2‖2 + ‖y1 − y2‖2

)
≤ θφ(x1) + (1− θ)φ(x2)− µ

2
θ(1− θ)‖x1 − x2‖2.

Hence

φ(xθ) = min
y∈Q2

h(xθ,y) ≤ h(xθ,yθ) ≤ θφ(x1) + (1− θ)φ(x2)− µ

2
θ(1− θ)‖x1 − x2‖2.

This shows that φ(x) is also µ-strongly convex.

Lemma 3. Assume g(w) is λ-strongly convex. Then we have

〈∇g(w),w −w∗〉 ≥ λ‖w −w∗‖2,

where w∗ = argminw g(w).

Proof. Firstly, we have for any w1 and w2

g(w1) ≥ g(w2) + 〈∇g(w2),w1 −w2〉+
λ

2
‖w1 −w2‖2.

Similarly, we have

g(w2) ≥ g(w1) + 〈∇g(w1),w2 −w1〉+
λ

2
‖w1 −w2‖2.

Combine these two inequalities, we can obtain

〈∇g(w1)−∇g(w2),w1 −w2〉 ≥ λ‖w1 −w2‖2.

Let w2 = w∗, then∇g(w2) = 0. This yields the desired result. The proof is completed.

Lemma 4. Assume that each loss LDT
(wT ) is L-smoothness with respect to wT . Then if λ >

L, φDT
(w) = LDT

(w∗T ) + λ
2 ‖w

∗
T − w‖2 is λL

λ+L -smoothness with respect to w, where w∗T =

argminwT
LDT

(wT ) + λ
2 ‖wT −w∗‖2.

Proof. Since LDT
(wT ) is differentiable, from the first-order optimality condition we know that

∇LDT
(w∗T ) + λ(w∗T −w) = 0.

Therefore, we can further obtain

∇2LDT
(w∗T )

∂w∗T
∂w

+ λ

(
∂w∗T
∂w

− I

)
= 0.

This implies
∂w∗T
∂w

= λ
(
∇2LDT

(w∗T ) + λI
)−1

.
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From Lemma 1, we have
∇φDT

(w) = λ(w −w∗T ).

Therefore, we can further have

∇2φDT
(w) = λ

(
I − ∂w∗T

∂w

)
= λ

(
I − λ

(
∇2LDT

(w∗T ) + λI
)−1
)
.

Note that LDT
(wT ) is L-smoothness with respect to wT . Then it yields

‖∇2φDT
(w)‖ = λ

∥∥∥(I − λ (∇2LDT
(w∗T ) + λI

)−1
)∥∥∥ ≤ λL

λ+ L
.

The proof is completed.

B.2 Proof of Lemma 1

Proof. By definition we have φDT
(w) = LDT

(w∗T ) + λ
2 ‖w

∗
T − w‖2, where w∗T =

argminwT
LDT

(wT ) + λ
2 ‖wT −w‖2. Since LDT

(wT ) is differentiable, from the first-order opti-
mality condition we know that

∇LDT
(w∗T ) + λ(w∗T −w) = 0.

From the chain rule we have

∇φDT
(w) =

(
∂w∗T
∂w

)>
∇LDT

(w∗T ) + λ

(
I −

(
∂w∗T
∂w

)>)
(w −w∗T )

= λ(w −w∗T ) +

(
∂w∗T
∂w

)>
(∇LDT

(w∗T ) + λ(w∗T −w)) = λ(w −w∗T ).

This proves the desired result.

B.3 Proof of Theorem 1

Proof. Define hDT
(wT ,w) = LDT

(wT ) + λ
2 ‖wT −w‖2. Then hDT

(wT ,w) is λ-strongly convex
with respect to (wT ,w). It follows immediately from Lemma 2 that φDT

(w) = LDT
(w∗T ) +

λ
2 ‖w

∗
T −w‖2 = argminwT

LDT
(wT ) + λ

2 ‖wT −w‖2 is also λ-strongly convex.

Next, we provide the convergence analysis. Before proving the results, we first define φ̂DT
(w,wT ) =

LDT
(wT )+ λ

2 ‖wT−w‖2, w∗T is the optimum solution to the problem w∗T = argminwT
LDT

(wT )+
λ
2 ‖wT −w∗‖2 and ŵ∗T is εs-optimum solution to the problem minwT

LDT
(wT ) + λ

2 ‖wT −w∗‖2,
namely ‖∇φ̂DT

(w, ŵ∗T )‖2 ≤ εs. In this way, we update ws+1 = ws − ηsλ(ws − 1
bs

∑bs
i=1 ŵ

∗
Ti

).

Then we consider the convex setting. First, φ̂DT
(w,wT ) = LDT

(wT ) + λ
2 ‖wT −w‖2 is λ-strongly

convex with respect to wT . Then from Lemma 3, we have

λ‖ŵ∗T −w∗T ‖2 ≤ 〈∇φ̂DT
(w, ŵ∗T ), ŵ∗T −w∗T 〉 ≤ ‖∇φ̂DT

(w, ŵ∗T )‖ · ‖ŵ∗T −w∗T ‖,

which implies

‖ŵ∗T −w∗T ‖2 ≤
1

λ2
‖∇φ̂DT

(w, ŵ∗T )‖2 ≤ ε

λ2
. (4)

Then we consider the term E[‖ws − 1
bs

∑bs
i=1 ŵ

∗
Ti
‖2]:

E[‖ws −
1

bs

bs∑
i=1

ŵ∗Ti
‖2] =E[‖ws −

1

bs

bs∑
i=1

(w∗Ti
+ ŵ∗Ti

−w∗Ti
)‖2]

≤2E[‖ws −
1

bs

bs∑
i=1

w∗Ti
‖2 +

1

bs

bs∑
i=1

‖ŵ∗Ti
−w∗Ti

‖2]
¬
≤ 2σ2 +

2εs
λ2
,
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where ¬ uses the assumption E‖ws − w∗Ti
‖2 ≤ σ2. Next, we can bound the term E〈ws −

1
bs

∑bs
i=1 ŵ

∗
Ti
,ws −w∗〉 as follows:

E〈ws −
1

bs

bs∑
i=1

ŵ∗Ti
,ws −w∗〉 =E〈ws −

1

bs

bs∑
i=1

w∗Ti
,ws −w∗〉 − 1

bs

bs∑
i=1

E〈ŵ∗Ti
−w∗Ti

,ws −w∗〉

=E〈 1
λ
∇F(ws),ws −w∗〉 − 1

bs

bs∑
i=1

E〈ŵ∗Ti
−w∗Ti

,ws −w∗〉

¬
≥E‖ws −w∗‖2 − 1

bs

bs∑
i=1

E〈ŵ∗Ti
−w∗Ti

,ws −w∗〉

≥E‖ws −w∗‖2 − 1

2bs

bs∑
i=1

E(‖ŵ∗Ti
−w∗Ti

‖2 + ‖ws −w∗‖2)

≥1

2
E‖ws −w∗‖2 − εs

2λ2
,

where ¬ holds, since φDT
(w) is λ-strongly convex with respect to w and thus F(w) =

1
n

∑n
i=1 LDT

(w∗T ) + λ
2 ‖w

∗
T − w‖2 is also λ-strongly convex which gives 〈∇F(w),w − w∗〉 ≥

λ‖w −w∗‖2 in Lemma 3.

Next, we use the above results to prove the convergence results:

E[‖ws+1 −w∗‖2]

=E[‖ws −w∗‖2]− 2ηsλE〈ws −
1

bs

bs∑
i=1

ŵ∗Ti
,ws −w∗〉+ η2

sλ
2E[‖ws −

1

bs

bs∑
i=1

ŵ∗Ti
‖2]

¬
≤E[‖ws −w∗‖2]− 2ηsλ

[
1

2
E‖ws −w∗‖2 − εs

2λ2

]
+ η2

sλ
2

[
2σ2 +

2εs
λ2

]
­
≤(1− ηsλ)E[‖ws −w∗‖2] +

ηsεs
λ

+ 2η2
s(λ2σ2 + εs),

­
≤(1− ηsλ)E[‖ws −w∗‖2] + 2η2

s(λ2σ2 + λεs) + 4ηsεs,

Then by setting ηs = 2/(sλ), we can further obtain

E[‖ws+1 −w∗‖2] ≤ (1− 2/s)E[‖ws −w∗‖2] +
8(λ2σ2 + εs)

λ2s2
+

2εs
λ2s

.

For brevity, let as+1 = E[‖ws+1 −w∗‖2], c = 8(λ2σ2+εs)
λ2 and d = 2εs

λ2 . Then we can bound as as
follows:

as ≤(1− 2

s− 1
)as−1 +

c

(s− 1)2
+

d

s− 1
≤ a1

s−1∏
i=1

(1− 2

i
) +

s−1∑
i=1

(
c

i2
+
d

i
)

s−1∏
j=i+1

(1− 2

j
)

≤
s−1∑
i=1

(
c

i2
+
d

i
)

(i− 1)i

(s− 2)(s− 1)
≤ c

s− 1
+
d

2
.

Therefore, by setting εs = c
S where c is a constant, we have

E[‖wS −w∗‖2] ≤ 8(λ2σ2 + c/S)

λ2S
+

c

λ2S
=

1

λ2S

(
8Sλ2σ2

S − 1
+ c

(
1 +

8

S − 1

))
Besides, from Lemma 4, we know that if each loss LDT

(wT ) is L-smoothness with respect to wT and
λ > L, φDT

(w) = LDT
(w∗T ) + λ

2 ‖w
∗
T −w‖2 is λL

λ+L -smoothness with respect to w, where w∗T =

argminwT
LDT

(wT ) + λ
2 ‖wT −w∗‖2. So the loss F(w) = 1

n

∑n
i=1 LDT

(w∗T ) + λ
2 ‖w

∗
T −w‖2

is also λL
λ+L -smoothness. Therefore, we can establish

‖∇F(w)‖ = ‖∇F(w)−∇F(w∗)‖ ≤ λL

λ+ L
‖w −w∗‖.
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Therefore, we have

E[‖∇F(wS)‖2] =E

∥∥∥∥∥ 1

n

n∑
i=1

wS
Ti
−wS

∥∥∥∥∥
2
 ≤ λ2L2

(λ+ L)2
E[‖wS −w∗‖2]

≤ L2

(λ+ L)2S

(
8Sλ2σ2

S − 1
+ c

(
1 +

8

S − 1

))
.

Now we consider non-convex setting. Firstly, by using smoothness assumption that each loss
LDT

(wT ) is L-smoothness with respect to wT and λ > L, from Lemma 4, we obtain that
φDT

(w) = LDT
(w∗T ) + λ

2 ‖w
∗
T − w‖2 is λL

λ+L -smoothness with respect to w, where w∗T =

argminwT
LDT

(wT ) + λ
2 ‖wT −w∗‖2. So the loss F(w) = 1

n

∑n
i=1 LDT

(w∗T ) + λ
2 ‖w

∗
T −w‖2

is also λL
λ+L -smoothness.

Since LDT
(wT ) is L-smoothness and λ > L, then φ̂DT

(w,wT ) = LDT
(wT ) + λ

2 ‖wT −w‖2 is
(λ− L)-strongly convex. Following proof of Eqn. (4), we can prove

‖ŵ∗T −w∗T ‖2 ≤
1

(λ− L)2
‖∇φ̂DT

(w, ŵ∗T )‖2 ≤ ε

(λ− L)2
.

Then we consider the term E[‖ws+1 −ws‖2]:

E[‖ws+1 −ws‖2] =η2
sλ

2E[‖ws −
1

bs

bs∑
i=1

(w∗Ti
+ ŵ∗Ti

−w∗Ti
)‖2]

≤2η2
sλ

2E[‖ws −
1

bs

bs∑
i=1

w∗Ti
‖2 +

1

bs

bs∑
i=1

‖ŵ∗Ti
−w∗Ti

‖2]

¬
≤2η2

sλ
2σ2 +

2η2
sλ

2εs
(λ− L)2

,

where ¬ uses the assumption E‖ws−w∗Ti
‖2 ≤ σ2. Next, we can bound the term E〈∇F(ws),ws+1−

ws〉 as follows:

E〈∇F(ws),ws+1 −ws〉 =− ηsλE〈ws −
1

bs

bs∑
i=1

ŵ∗Ti
,∇F(ws)〉

=− ηsλE〈ws −
1

bs

bs∑
i=1

w∗Ti
,∇F(ws)〉+ ηsλ

1

bs

bs∑
i=1

E〈ŵ∗Ti
−w∗Ti

,∇F(ws)〉

≤ − ηsE‖∇F(ws)‖2 + ηs
1

2bs

bs∑
i=1

E(λ2‖ŵ∗Ti
−w∗Ti

‖2 + ‖∇F(ws)‖2)

≤− ηs
2
E‖∇F(ws)‖2 +

ηsεsλ
2

(λ− L)2
.

Then, we can obtain

E[F(ws+1)]

≤E
[
F(ws) + E〈∇F(ws),ws+1 −ws〉+

λL

2(λ+ L)
‖ws+1 −ws‖2

]
≤E

[
F(ws)− ηs

2
E‖∇F(ws)‖2 +

ηsεsλ
2

(λ− L)2
+

λL

2(λ+ L)

(
2η2
sλ

2σ2 +
2η2
sλ

2εs
(λ− L)2

)]
.
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Therefore, by setting ηs = η, we then rearrange and sum up the above inequality to obtain:

min
s

E[‖∇F(ws)‖2] ≤ 1

S

s∑
i=1

E‖∇F(ws)‖2

≤ 2

Sη
E
[
F(w0)− F(wS)

]
+

2εsλ
2

(λ− L)2
+

2Lηλ3

(λ+ L)

(
σ2 +

εs
(λ− L)2

)
≤4
√

∆γ√
S

+
2cλ2

(λ− L)2
√
S
,

where in the last inequality, we let η =
√

∆
γS , γ = λ3L

(λ+L)

(
σ2 + εs

(λ−L)2

)
, ∆ = F(w0)− F(w∗) ≥

F(w0)− F(wS), and εs = c/
√
S. Therefore, we have

min
s

E[‖∇F(ws)‖2] = λ2 min
s

E

∥∥∥∥∥ 1

n

n∑
i=1

w∗sTi
−ws

∥∥∥∥∥
2
 ≤ 1√

S

[
4
√

∆γ +
2cλ2

(λ− L)2

]
.

This completes the proof.

B.4 Proof of Theorem 4

Proof. We bound the loss function F(ws+1) as follows:

F(ws+1)

=
1

n

n∑
i=1

min
wTi

{
L(Ti,wTi

) +
λ

2
‖wTi

−ws+1‖2
}

=
1

n

n∑
i=1

[
L(Ti,w

s+1
Ti

) +
λ

2
‖ws+1

Ti
−ws+1‖2

]
¬
≤ 1

n

n∑
i=1

[
L(Ti,w

s
Ti

) +
λ

2
‖ws

Ti
−ws+1‖2

]

=
1

n

n∑
i=1

[
L(Ti,w

s
Ti

) +
λ

2
‖ws

Ti
−ws‖2

]
+

λ

2n

n∑
i=1

[
2〈ws −ws+1,ws

i −ws〉+ ‖ws+1 −ws‖2
]

=F(ws) +
λ

2n

n∑
i=1

[
2〈ws −ws+1,ws

i −ws〉+ ‖ws+1 −ws‖2
]

where ¬ holds since ws+1
i is the optimum solution to minwTi

{
L(Ti,wTi

) + λ
2 ‖wTi

−ws+1‖2
}

.
Next, we take expectation on each side of the above inequality and obtain

E[F(ws+1)] ≤E[F(ws)] +
λ

2

[
2E〈ws −ws+1,

1

n

n∑
i=1

wk
i −ws〉+ E‖ws+1 −ws‖2

]
¬
≤E[F(ws)] +

λ

2

[
2E〈ws −ws+1,

1

bs

bs∑
i=1

ws
i −ws〉+ E‖ws+1 −ws‖2

]
­
≤E[F(ws)] +

λ

2

[
1− 2

ληs

]
E‖ws+1 −ws‖2

where ¬ holds since we sample the bs tasks uniformly from the observed n tasks; ­ uses the updating
equation ws+1 = ws − ηsλ(ws − 1

bs

∑bs
i=1 w

s
Ti

). Therefore, we have

E
[
F(ws+1)− F(ws)

]
≤ λ

2

[
1− 2

ληs

]
E‖ws+1 −ws‖2 < 0.

Then we sum up the above inequality and can further establish

E
[
F(w0)− F(ws+1)

]
≥ λ

2

[
2

ληs
− 1

] s∑
i=0

E‖ws+1 −ws‖2.
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As 2
ληs
− 1 > 0 and infw F(w) > −∞, this implies lims→+∞ E[‖ws+1 − ws‖] = 0. That is,

there exists a point w∗ = lims→+∞ E[ws]. Therefore, according to the updating rule, we have
0 = lims→+∞ E[ws+1 − ws + ηsλ(ws − 1

bs

∑bs
i=1 w

s
Ti

)] = lims→+∞ E[ws − 1
bs

∑bs
i=1 w

s
Ti

],
implying ∇w∗F(w∗) = lims→+∞∇wsF(ws) = lims→+∞ E[λ(ws − 1

n

∑n
i=1 w

s
Ti

)] = λ(w∗ −
1
n

∑n
i=1 w

∗
Ti

)] = 0. This indicates that the sequence {ws} will converge to a Karush–Kuhn–Tucker
point. The proof is completed.

C Proof of The Results in Sec. 3.3

C.1 Auxiliary Lemmas

In this section, we introduce auxiliary lemmas which will be used for proving the results in Sec. 3.3.
Lemma 5. Assume that `(f(wT ,x),y) is L-smooth in wT . If λ > L, then it holds for any w that

LDT
(w∗T )− LDT

(w) ≤ λ

2
‖w∗ −w‖2 − λ− L

2
‖w∗T −w‖2 − λ

2
‖w∗ −w∗T ‖2. (5)

Moreover, assume that `(f(wT ,x),y) is also convex in wT . Then for any w we have

LDT
(w∗T )− LDT

(w) ≤ λ

2
‖w∗ −w‖2 − λ

2
‖w∗T −w‖2 − λ

2
‖w∗T −w∗‖2. (6)

Proof. Let ψDT
(wT ) = LDT

(wT ) + λ
2 ‖wT −w‖22. Since `(f(wT ,x),y) for all T is L-smooth in

wT and w∗T is optimal for ψ(wT ), it is straightforward to show that for any w

ψDT
(w) ≥ ψDT

(w∗T ) +
λ− L

2
‖w −w∗T ‖2,

which leads to

LDT
(w) ≥ LDT

(w∗T )− λ

2
‖w∗ −w‖2 +

λ− L
2
‖w∗T −w‖2 +

λ

2
‖w∗ −w∗T ‖2.

Moreover, if `(f(wT ,x),y) is convex in wT , then we have that ψ(w∗T ) is λ-strongly convex. Based
on the optimality of w∗T we obtain that for any w

ψDT
(w) ≥ ψDT

(w∗T ) +
λ− L

2
‖w −w∗T ‖2,

which implies

LDT
(w) ≥ LDT

(w∗T )− λ

2
‖w∗ −w‖2 +

λ

2
‖w∗T −w‖2 +

λ

2
‖w∗ −w∗T ‖2.

The proof is completed.

The following lemma is a generalization of the result in [3].
Lemma 6. Assume that `(f(w,x),y) is G-Lipschitz continuous and L-smooth with respect
to w. Given a learning task T , let L(wT ) = E(x,y)∼T [`(f(wT ,x),y)] and LDT

(wT ) =
1
K

∑
(x,y)∈DT

`(f(wT ,x),y) respectively denote the expected and empirical losses on DT =

{(xi,yi)}Ki=1 ∼ T . Consider the following empirical minimization problem:

w∗T = argmin
wT

{
ψDT

(wT ) =

{
LDT

(wT ) +
λ

2
‖wT −w∗‖2

}}
.

Then the following bound holds for if λ > L:∣∣EDT∼T
[
L(w∗T )− LDT

(w∗T )
]∣∣ ≤ 4G2

(λ− L)K
,
∥∥EDT∼T

[
∇L(w∗T )−∇LDT

(w∗T )
]∥∥ ≤ 4GL

(λ− L)K
.

Moreover, assume that `(f(w,x),y) is convex. Then the following bound holds for any λ > 0:∣∣EDT∼T
[
L(w∗T )− LDT

(w∗T )
]∣∣ ≤ 4G2

λK
,
∥∥EDT∼T

[
∇L(w∗T )−∇LDT

(w∗T )
]∥∥ ≤ 4GL

λK
.
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Proof. The result can be proved by stability argument. For brevity, let r(wT ) = λ
2 ‖wT −w∗‖2 is a

λ-strongly convex regularization function. Let us consider D(i)
T which is identical to DT except that

one of the (xi,yi) is replaced by another random sample (x′i,y
′
i). We then denote

w∗T,i = argmin
wT

ψD(i)
T

(wT ) :=
1

K

∑
j 6=i

`(f(wT ,xj),yj) + `(f(wT ,x
′
i),y

′
i)

+ r(wT )

 .

Then we can show that
ψDT

(w∗T,i)− ψDT
(w∗T )

=
1

K

∑
j 6=i

(
`(f(w∗T,i,xj),yj)− `(f(w∗T ,xj),yj)

)
+

1

K

(
`(f(w∗T,i,xi),yi)− `(f(w∗T ,xi),yi)

)
+ r(w∗T,i)− r(w∗T )

=ψ
D

(i)
T

(w∗T,i)− ψD(i)
T

(w∗T ) +
1

K

(
`(f(w∗T,i,xi),yi)− `(f(w∗T ,xi),yi)

)
− 1

K

(
`(f(w∗T,i,x

′
i),y

′
i)− `(f(w∗T ,x

′
i),y

′
i)
)

¬
≤ 1

K

∣∣`(f(w∗T,i,xi),yi)− `(f(w∗T ,xi),yi)
∣∣+

1

K

∣∣`(f(w∗T,i,x
′
i),y

′
i)− `(f(w∗T ,x

′
i),y

′
i)
∣∣

­
≤2G

K
‖w∗T −w∗T,i‖,

where in ¬ we have used the optimality of w∗T,i with respect to ψ
D

(i)
T

(wT ), and in ­ we use the

Lipschitz continuity of the loss function `. Since ` is L-smooth and w∗T is optimal for ψDT
(wT ), it

is easily to verify that

ψDT
(w∗T,i) ≥ ψDT

(w∗T ) +
λ− L

2
‖w∗T,i −w∗T ‖2. (7)

Provided that λ > L, by combing the preceding two inequalities we arrive at

‖w∗T,i −w∗T ‖ ≤
4G

(λ− L)K
.

It then follows consequently from the Lipschitz continuity of ` that for any sample (x,y) ∼ T

|`(f(w∗T,i,x),y)− `(f(w∗T ,x),y)| ≤ G‖w∗T,i −w∗T ‖ ≤
4G2

(λ− L)K
. (8)

Note that DT and D(i)
T are both i.i.d. samples of the task T . It follows that

EDT
[L(w∗T )] = E

D
(i)
T

[
L(w∗T,i)

]
= E

D
(i)
T ∪{(xi,yi)}

[
`(f(w∗T,i,xi),yi)

]
.

Since the above holds for all i = 1, ...,K, we can show that

EDT
[L(w∗T )] =

1

K

K∑
i=1

E
D

(i)
T ∪{(xi,yi)}

[
`(f(w∗T,i,xi),yi)

]
=

1

K

K∑
i=1

EDT∪{(x′i,y′i)}
[
`(f(w∗T,i,xi),yi)

]
.

Concerning the empirical case, we can see that

EDT

[
LDT

(w∗T )
]

=
1

K

K∑
i=1

EDT
[`(f(w∗T ,xi),yi)] =

1

K

K∑
i=1

EDT∪{(x′i,y′i)} [`(f(w∗T ,xi),yi)] .

By combining the above two inequalities we get∣∣EDT

[
L(w∗T )− LDT

(w∗T,i)
]∣∣ =

∣∣∣∣∣ 1

K

K∑
i=1

EDT∪{(x′i,y′i)}
[
`(f(w∗T ,xi),yi)− `(f(w∗T,i,xi),yi)

]∣∣∣∣∣
≤ 1

K

K∑
i=1

EDT∪{(x′i,y′i)}
[∣∣`(f(w∗T ,xi),yi)− `(f(w∗T,i,xi),yi)

∣∣]
≤ 4G2

(λ− L)K
,
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where in the last inequality we have used (8). This proves the objective function inequality in the first
part of the lemma. To prove the gradient norm inequality, we note from the smoothness assumption
that

‖∇`(f(w∗T ,x),y)−∇`(f(w∗T,i,x),y)‖ ≤ L‖w∗T −w∗T,i‖ ≤
4GL

(λ− L)K
. (9)

The rest of the argument mimics that for the objective value case. Here we provide the details for the
sake of completeness. Again, note that DT and D(i)

T are both i.i.d. samples of the task distribution T .
It follows that

EDT
[∇L(w∗T )] = E

D
(i)
T

[
∇L(w∗T,i)

]
= E

D
(i)
T ∪{(xi,yi)}

[
∇`(f(w∗T,i,xi),yi)

]
.

Since the above holds for all i = 1, ...,m, we can show that

EDT
[∇L(w∗T )] =

1

K

K∑
i=1

E
D

(i)
T ∪{(xi,yi)}

[
∇`(f(w∗T,i,xi),yi)

]
=

1

K

K∑
i=1

EDT∪{(x′i,y′i)}
[
∇`(f(w∗T,i,xi),yi)

]
.

Concerning the empirical version, we can see that

EDT

[
∇LDT

(w∗T )
]

=
1

K

K∑
i=1

EDT
[∇`(f(w∗T ,xi),yi)] =

1

K

K∑
i=1

EDT∪{(x′i,y′i)} [∇`(f(w∗T ,xi),yi)] .

By combining the above two inequalities we get∥∥EDT

[
∇L(w∗T )−∇LDT

(w∗T,i)
]∥∥

=

∥∥∥∥∥ 1

K

K∑
i=1

EDT∪{(x′i,y′i)}
[
∇`(f(w∗T ,xi),yi)−∇`(f(w∗T,i,xi),yi)

]∥∥∥∥∥
≤ 1

K

K∑
i=1

EDT∪{(x′i,y′i)}
[∥∥∇`(f(w∗T ,xi),yi)−∇`(f(w∗T,i,xi),yi)

∥∥]
≤ 4GL

(λ− L)K
,

where in the last inequality we have used (9).

To prove the second part, we can just apply the almost identical stability argument except that the
inequality (7) can now be replaced by a stronger version due to the convexity of `:

ψDT
(w∗T,i) ≥ ψDT

(w∗T ) +
λ

2
‖w∗T,i −w∗T ‖2.

The proof is concluded.

C.2 Proof of Theorem 2

Proof. Consider a fixed task T ∼ T and its associated random sample DT ∼ T of size K. We
denote LDT

(w) = 1
K

∑
(x,y)∈DT

`(f(wT ,x),y). From Lemma 6 we know that

∣∣EDT∼T
[
L(w∗T )− LDT

(w∗T )
]∣∣ ≤ 4G2

λK
. (10)

From Lemma 5, for any w we have

LDT
(w∗T )− LDT

(w) ≤ λ

2
‖w∗ −w‖2 − λ

2
‖w∗T −w‖2 − λ

2
‖w∗ −w∗T ‖2. (11)
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By taking expectation over the random sample set DT at w = w∗T,E we obtain

EDT
[LDT

(w∗T )− LDT
(w∗T,E)] ≤EDT

[
λ

2
‖w∗ −w∗T,E‖2 −

λ

2
‖w∗T −w∗T,E‖2 −

λ

2
‖w∗ −w∗T ‖2

]
≤λ

2
EDT

[
‖w∗ −w∗T,E‖2

]
.

(12)

Then we can show the following

EDT

[
L(w∗T )− L(w∗T,E)

]
=EDT

[
L(w∗T )− LDT

(w∗T,E)
]

+ EDT

[
LDT

(w∗T )− L(w∗T,E)
]

≤
∣∣EDT

[
L(w∗T )− LDT

(w∗T,E)
]∣∣+ EDT

[
LDT

(w∗T )− L(w∗T,E)
]

¬
≤4G2

λK
+
λ

2
EDT

[
‖w∗ −w∗T,E‖2

]
,

where in the last inequality we have used Eqn. (10) and the above inequality (12). Now we can take
expectation of both sides of the above over T ∼ T to obtain

ET∼T EDT

[
L(w∗T )− L(w∗T,E)

]
≤ 4G2

λK
+
λ

2
ET∼T

[
‖w∗ −w∗T,E‖2

]
.

This proves the results in the theorem.

C.3 Proof of Theorem 3

Proof. Consider a fixed task T ∼ T and its associated random sample DT ∼ T of size K. From the
smoothness of `(f(w,x),y) we can derive that

LDT
(w∗) ≥LDT

(w∗T ) + 〈∇LDT
(w∗T ),w∗ −w∗T 〉 −

L

2
‖w∗ −w∗T ‖2

=LDT
(w∗T ) +

1

λ
‖∇LDT

(w∗T )‖2 − L

2λ2
‖∇LDT

(w∗T )‖2

≥LDT
(w∗T ) +

1

λ

[
1− L

2λ

]
‖∇LDT

(w∗T )‖2,

(13)

where we have used the first-order optimality condition∇LDT
(w∗T ) + λ(w∗T −w∗) = 0 and λ > L.

Then we can show the following∥∥EDT
[∇L(w∗T )]

∥∥2

=
∥∥EDT

[
∇L(w∗T )−∇LDT

(w∗T )
]

+ EDT

[
∇LDT

(w∗T )
]∥∥2

≤2
∥∥EDT

[
∇L(w∗T )−∇LDT

(w∗T )
]∥∥2

+ 2
∥∥EDT

[
∇LDT

(w∗T )
]∥∥2

≤2
∥∥EDT

[
∇L(w∗T )−∇LDT

(w∗T )
]∥∥2

+ 2EDT

[∥∥∇LDT
(w∗T )

∥∥2
]

¬
≤2
∥∥EDT

[
∇L(w∗T )−∇LDT

(w∗T )
]∥∥2

+
2

β
EDT

[
LDT

(w∗)− LDT
(w∗T )

]
=2
∥∥EDT

[
∇L(w∗T )−∇LDT

(w∗T )
]∥∥2

+
2

β
EDT

[
LDT

(w∗)− L(w∗T )
]

+
2

β
EDT

[
L(w∗T )− LDT

(w∗T )
]

­
≤ 32G2L2

(λ− L)2K2
+

8G2

(λ− L)βK
+

2

β
EDT

[
LDT

(w∗)− L(w∗T )
]

=
32G2L2

(λ− L)2K2
+

8G2

(λ− L)βK
+

2

β
[L(w∗)− L(w∗T )]

®
≤ 32G2L2

(λ− L)2K2
+

8G2

(λ− L)βK
+

2

β

[
L(w∗)− L(w∗T,E)

]
,

where in ¬ we used inequality (13) and let β = 1
λ

[
1− L

2λ

]
, in ­ we used Lemma 6:∣∣EDT∼T

[
L(w∗T )− LDT

(w∗T )
]∣∣ ≤ 4G2

(λ− L)K
,
∥∥EDT∼T

[
∇L(w∗T )−∇LDT

(w∗T )
]∥∥ ≤ 4GL

(λ− L)K
.
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Figure 2: Effects of λ to Meta-MinibatchProx on miniImageNet.

In ®, we use the fact that w∗T,E is the optimum to the expected risk L(w). Now we can take
expectation of both sides of the above over T ∼ T to obtain

ET∼T
[∥∥EDT∼T [∇L(w∗T )]

∥∥2
]
≤ 32G2L2

(λ− L)2K2
+

8G2

(λ− L)βK
+

2

β
ET∼T

[
L(w∗)− L(w∗T,E)

]
.

This completes the proof.

C.4 Proof of Theorem 5

Proof. The proof of non-convex loss is very similar to the proof of convex case in Sec. C.2. For
non-convex setting, we firstly replace the results in Eqn. (10) in Sec. C.2 by the first result in Lemma 6:∣∣EDT∼T

[
L(w∗T )− LDT

(w∗T )
]∣∣ ≤ 4G2

(λ− L)K
.

Then, we replace the results in Eqn. (11) in Sec. C.2 by the first result in Lemma 5 that for any w we
have

LDT
(w∗T )− LDT

(w) ≤ λ

2
‖w∗ −w‖2 − λ− L

2
‖w∗T −w‖2 − λ

2
‖w∗ −w∗T ‖2.

Then the following proof can be derived based on almost identical argument in Sec. C.2 under the
assumption λ > L. In this way, we can obtain the desired result:

ET∼T EDT

[
L(w∗T )− L(w∗T,E)

]
≤ 4G2

(λ− L)K
+
λ

2
ET∼T

[
‖w∗ −w∗T,E‖2

]
.

The proof is completed.

D More Experimental Results

D.1 Robust Evaluation Experiments on Classification Tasks

We also report the effects of λ to the testing performance of our method in Fig. 2. When the value of
λ ranges from 10−1 to 101.7, the performance of our method on miniImageNet are relatively stable.
This well demonstrates the robustness of Meta-MinibatchProx to the choice of λ.

D.2 More Experimental Results on Regression Tasks

Here we provide more experimental results for regression task. All the experimental setting is the
same in the manuscript for regression task. By observing Fig. 3, we can find that MAML outperforms
than its first-order variants, namely FOMAML and Reptile. Moveover, one can observe that our
proposed Meta-MinibatchProx also outperforms all other approaches including MAML. These results
are consistent with the visual results and numerical results in the manuscript. All results shows the
advantages of our proposed Meta-MinibatchProx approach.
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Figure 3: The illustration of the compared meta learning methods on the few-shot regression problem.
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