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Abstract

Most existing subspace clustering methods hinge on self-
expression of handcrafted representations and are unaware
of potential clustering errors. Thus they perform unsatis-
factorily on real data with complex underlying subspaces.
To solve this issue, we propose a novel deep adversarial
subspace clustering (DASC) model, which learns more fa-
vorable sample representations by deep learning for sub-
space clustering, and more importantly introduces adver-
sarial learning to supervise sample representation learning
and subspace clustering. Specifically, DASC consists of a
subspace clustering generator and a quality-verifying dis-
criminator, which learn against each other. The generator
produces subspace estimation and sample clustering. The
discriminator evaluates current clustering performance by
inspecting whether the re-sampled data from estimated sub-
spaces have consistent subspace properties, and supervises
the generator to progressively improve subspace clustering.
Experimental results on the handwritten recognition, face
and object clustering tasks demonstrate the advantages of
DASC over shallow and few deep subspace clustering mod-
els. Moreover, to our best knowledge, this is the first suc-
cessful application of GAN-alike model for unsupervised
subspace clustering, which also paves the way for deep
learning to solve other unsupervised learning problems.

1. Introduction
In this paper, we aim to develop new deep learning so-

lutions to the unsupervised subspace clustering problem.

Compared with conventional “shallow” subspace cluster-

ing methods [5, 14, 34, 35] which are confined to linear

subspaces, deep subspace clustering is obviously advanta-

geous. It can provide more powerful sample representa-

tion through deep learning and effectively cluster samples

from non-linear subspaces [9], which may greatly extend

subspace clustering to more complicated real data.

Recently, a deep auto-encoder based subspace cluster-

ing model was proposed [9] aiming to learn better sample

representations. However, like those conventional “shal-
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Figure 1: Illustration of our idea. Given the current cluster-

ing with error in (a), the discriminator in DASC can recog-

nize its poor quality by differentiating the fake sample “©”

generated from current clustering (i.e. the estimated sub-

space Ŝ by generator) and the original “�” and “�” sam-

ples, as they have inconsistent subspace properties. With

such evaluation information as supervision, the generator in

DASC progressively improves sample representation learn-

ing and outputs correct clustering results in (b).

low” methods [5, 14, 34, 35], it still hinges on the self-

expression as supervision, which may not perform well

on samples with unfriendly distributions (e.g. the intrin-

sic subspaces are not independent or have significant in-

tersection). Moreover, existing subspace clustering meth-

ods [5,9,14,34,35,38,39] do not consider potential error in

obtained clusters, leading to noisy learned representations

and consequently degraded clustering performance.

In this work, targeting at the above drawbacks of existing

methods, we develop a novel unsupervised deep subspace

clustering model following a GAN framework [7] due to

its recent success in unsupervised data generation, which is

termed Deep Adversarial Subspace Clustering (DASC). It

consists of a subspace (and cluster) generator and a discrim-

inator that learns to supervise the generator by evaluating

clustering quality in an unsupervised manner. If the cluster-

ing produced by the generator is correct, the samples within

the same cluster would all lie in the same intrinsic subspace,

meaning their arbitrary linear combinations would also stay

in the same subspace and have identical subspace proper-

ties, as stated in the well known linear subspace property. In

this case, the discriminator cannot detect the difference be-

tween the re-sampled data from the intrinsic subspace and

original samples in this cluster. Otherwise, given inaccu-

rate clusters, as shown in Fig. 1 (a), the spanned subspace



Ŝ by the samples within the same cluster deviates from the

intrinsic subspaces S∗
1 and S∗

2 that samples lie in. Then

the discriminator can easily distinguish the re-sampled out-

lying data (“©”) drawn from the subspace Ŝ from those

original data (“�” and “�”), and feeds back such informa-

tion to the generator as supervision to produce better sub-

space estimation and sample clustering. Thus, the generator

progressively improves subspace clustering, where the “�”

and “�” are clustered correctly, as shown in Fig. 1 (b).

In particular, the role of the generator is three-fold. First,

it uses a deep auto-encoder to transform raw input sam-

ples into better representations that are enforced to locate

in a union of linear subspaces via a self-expression layer.

In this way, DASC effectively relieves the linear subspace

assumption on samples. Secondly, the generator produces

subspace clustering results based on the sample affinity ma-

trix produced by the internal self-expression layer. Thirdly,

it generates new “fake” samples by sampling from the es-

timated clusters (or equivalently spanned subspaces) and

feeds them to the discriminator for differentiation to eval-

uate the subspace clustering quality accordingly. On the

other hand, the discriminator is trained to distinguish the

generated “fake” samples from the provided real ones, and

evaluates the quality of clustering results based on the linear

subspace property. It feeds back the evaluation information

to supervise the generator for subspace clustering. Differ-

ent from conventional discriminators in GAN-alike mod-

els [7] providing over-complex classification boundaries to

accurately leverage the subspace property to distinguish the

samples, we propose an energy-based discriminator to de-

tect real and outlying samples by inspecting how well they

fit the subspace of interest. With supervision from such a

discriminator, the generator will learn more discriminative

representations and improve the clustering performance.

Experimental results on the handwritten recognition,

face and object clustering tasks well testify the advantages

of our method. To sum up, this paper makes the following

contributions.

1) We propose a novel deep adversarial subspace cluster-

ing method, termed as DASC. By introducing adver-

sarial learning, the discriminator of DASC can faith-

fully evaluate the current clustering quality and super-

vise the generator’s learning to produce more favorable

representations for better subspace clustering.

2) We design a simple but effective energy-based dis-

criminator to extensively exploit the subspace prop-

erty, which is novel and complementary to the auto-

encoder induced self-expression loss.

2. Related Work
To date, various subspace clustering methods [2, 4, 5,

14, 32] have been developed. Most of them leverage self-

expression to solve underlying subspaces and sample clus-

tering, which can be written in the following uniform for-

mulation:

min
Θc

1

2
‖X −XΘc‖2F + λ‖Θc‖p, (1)

where the i-th column Θc,i in the self-expression coeffi-

cient matrix Θc ∈ R
n×n denotes the representation coef-

ficients of the i-th data point Xi in the data matrix X ∈
R

d×n. Here ‖Θc‖p denotes the prior term, e.g. the sparsity

penalty term ‖Θc‖1 [4, 5], the nuclear norm penalty term

‖Θc‖∗ [14], and the F -norm ‖Θc‖F [8, 15]. Then these

methods perform normalized cuts (NCut) [24] or spectral

clustering [19] on the affinity matrix Λ = 1
2 (|Θc|+ |Θc|T )

to cluster the data points.

However, they can only cluster linear subspaces, which

limits their application. To solve this problem, kernel based

subspace clustering methods [20, 33] have been developed.

But it is difficult to choose a proper kernel capturing the un-

derlying subspaces [9]. Moreover, all these existing meth-

ods only seek linear representation coefficients, which may

not be discriminative for clustering tasks. In contrast, our

proposed DASC uses a discriminator to effectively evaluate

the clustering performance and supervise the generator to

learn more discriminative representations.

Recently, several deep learning based clustering meth-

ods [3, 9, 25, 31] have been presented. Song et al. [25] in-

tegrated an auto-encoder [22] with k-means to learn and

cluster the latent features. Similarly, Xie et al. [31] pro-

posed a deep embedded clustering method. But neither of

them is applicable to subspace clustering. More recently,

Ji et al. [9] proposed a deep subspace clustering network

(DSC-Net), which uses an auto-encoder to learn representa-

tions for input samples and obtain the linear representation

coefficients (like Eqn. (1)) through a self-expressive layer.

Although DSC-Net avoids the linear subspace assumption,

it is not capable of self-tuning to learn better representa-

tions according to the current clustering results. Compara-

tively, the proposed DASC introduces adversarial learning

between discriminator and generator to enforce the latter to

improve the current clustering results by learning better rep-

resentations.

3. Deep Adversarial Subspace Clustering
In this section we detailedly introduce the proposed

method. We first explain the network formulation, then in-

troduce each component, and finally elaborate its training

and clustering process.

3.1. Formulation

As aforementioned, subspace clustering methods [5, 14,

34] cluster observed samples by recovering multiple low-

dimensional subspaces to fit and separate them. However,

for realistic data of complex natures, it is difficult to find



subspaces fitting their raw representations well. In this case,

samples from different subspaces may be wrongly clustered

into the same cluster, harming the clustering performance.

To solve such an unsupervised learning problem, existing

state-of-the-art methods (e.g., SSC [5] and LRR [14]) typi-

cally hinge on the sample self-expression property within

the same subspace, which usually do not perform well

for samples with unfriendly distributions (e.g., the intrinsic

subspaces are not independent or have significant intersec-

tion). Besides, these methods do not consider potential error

in obtained clusters and thus cannot improve themselves by

evaluating the current clustering quality.

To address the above critical issues within a unified

model, we propose the Deep Adversarial Subspace Clus-

tering (DASC) model, which learns more favorable sam-

ple representations for subspace clustering via deep learn-

ing and introduces subspace adversarial learning to comple-

ment self-expression for better sample clustering. As illus-

trated in Fig. 2, it consists of a subspace (and cluster) gen-

erator and a discriminator, respectively denoted by G and

D. For brevity, let {X1, . . . ,Xn} denote the input samples

and {z1, . . . , zn} denote their corresponding latent repre-

sentations learned by the encoder in G. Namely, zi ∈ R
d

is the d-dimensional representation of the i-th 2D sample

Xi ∈ R
h×w. The cluster number, i.e., number of sub-

spaces, is denoted by K.

Specifically, DASC learns the latent representations zi
for the input samples Xi through a multi-layer non-linear

encoder in its generator G. To enforce the new representa-

tions zi to be more suitable for subspace clustering than the

raw representation Xi, G introduces a self-expressive layer

and minimizes the following self-expression loss:

Ls(Θc;Z) = ‖Z −ZΘc‖2F + λ‖Θc‖2F , (2)

where Z = [z1, · · · , zn] ∈ R
d×n and Θc ∈ R

n×n is

the self-expression coefficient matrix. Benefiting from the

more powerful representations zi, applying a spectral clus-

tering algorithm (e.g., NCut [24]) on the induced affinity

matrix Λ = 1
2 (|Θc| + |ΘT

c |) gives reasonably good sample

clusters Ci (i = 1, . . . ,K).

To address complex sample distributions (e.g., inter-

sected subspaces) and improve subspace clustering results,

DASC introduces adversarial learning as a novel and com-

plementary unsupervised solution. Concretely, let S∗
i be the

i-th ground-truth subspace to recover and {zi1 , . . . , zim∗
i
}

be the representations of m∗
i authentic samples lying in S∗

i .

We have span(zi1 , . . . , zim∗
i
) = S∗

i and any linear com-

binations of zi still lie in S∗
i . When the obtained cluster

Ci is not accurate due to the complex distribution, samples

within Ci, denoted as {zi1 , . . . , zim∗
i
, zim∗

i
+1
, . . . , zimi

},

would span a subspace Ŝi = span(Ci) deviating from S∗
i .

In other words, linearly combining random samples from
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Figure 2: Illustration of overall architecture. DASC con-

sists of a generator and a discriminator that learn against

each other. In particular, the generator contains an auto

encoder-decoder for learning sample representations, a self-

expressive layer for producing sample affinity matrix and

clustering, and a sampling layer for generating real and fake

data for subspace quality evaluation. The subspace-wise

discriminator takes in the generated samples and learns to

distinguish real data from fake ones.

Ci will generate samples lying out of S∗
i which are differ-

ent from zi1 , . . . , zim∗
i

.

DASC aims to inspect such differences between re-

generated samples from noisy Ci and authentic samples

from S∗
i to define an effective and computable metric for

the cluster quality and obtain extra supervision. Formally,

DASC introduces a novel discriminative loss to measure the

quality of the cluster Ci:

ξ(Ci) := Ezij
∼Ci

log(Di(zij )), (3)

where Di is a discriminative model for the subspace S∗
i and

trained by minimizing the following discriminative loss:

LD = Ez̄ij
∼ ̂Si

log(Di(z̄ij ))−Ezij
∼S∗

i
log(Di(zij )). (4)

Here ∼ denotes a composite operation including sampling

and linear combination, and will be explained in more de-

tails in Sec. 3.2. The sampling and linear combination oper-

ations are important, which are inspired by the key property

of a subspace—linearly combining samples within a valid

subspace would not generate outlying samples. The dis-

criminator Di in DASC is trained to distinguish the “real”

samples from the ground-truth intrinsic subspace S∗
i and

“fake” samples from its estimate Ŝi. Different from con-

ventional discriminators in GAN-alike models, the discrim-

inator in DASC needs to estimate the probability of each

sample belonging to a certain subspace. Namely, it needs

to be subspace-wisely discriminative. We introduce a new

energy based discriminator model in Sec. 3.3 to fulfill such

a critical requirement.



If all the “fake” samples (up to linear combination) from

the cluster Ci are classified into S∗
i by the discriminator D,

i.e., a large value for the quantity in Eqn. (3), then the clus-

ter Ci has a high quality. Otherwise, the clusters are erro-

neous. By feeding back such supervision to the generator G,

G is then enforced to maximize the quality or equivalently

the discriminator loss in Eqn. (4), leading to better cluster

sample representation and clustering results, i.e. the sam-

ples within Ci being distinguishable to the discriminator D.

In the following subsections, we explain details on the gen-

erator G and the discriminator D, to implement methods

introduced above.

3.2. Generator

The generator G of DASC learns discriminative repre-

sentations that are favorable for subspace clustering, by ex-

ploiting the low-dimensional structure of samples, and gen-

erates subspace clustering results. In particular, it learns

to transform raw input samples into a latent representation

space where samples can be fitted well by a union of linear

subspaces, clusters the samples using their subspace mem-

berships, and produces “real” and “fake” samples from each

cluster as explained above.

As shown in Fig. 2, the generator uses a deep convolu-

tional auto-encoder to non-linearly transform the samples

Xi into representations zi. Then it uses a self-expressive

layer following the encoder to produce self-expression co-

efficients Θc (see Eqn. (2)). The new representations ZΘc,i

are subsequently fed into the decoder. Here the decoder has

a symmetrical structure to the encoder, which aims to recon-

struct the original input Xi from ZΘc to ensure that the rep-

resentation Z preserve sufficient sample information. The

affinity matrix Λ = 1
2 (|Θc|+ |ΘT

c |) is used for clustering.

Another important function of G is to generate “real”

and “fake” samples conditioned on the cluster Ci (i =
1, . . . ,K), which is implemented by the sampling layer in

Fig. 2. Based on the sample affinity matrix Λ learned by

the self-expressive layer, we apply the NCut algorithm [24]

to cluster zi (i = 1, · · · , n) into K clusters Ci’s. Mean-

while, as shown in Fig. 3, our discriminator is designed to

learn a linear subspace Si to fit the intrinsic ground-truth

subspace S∗
i of cluster Ci. Then according to the projection

residuals (see Eqn. (5) in Sec. 3.3) of data points on their

corresponding subspaces learned by the discriminator, the

discriminator can identify whether the input data are real

or fake. See details of the discriminator in Sec. 3.3. Ac-

cordingly, the sampling layer in G computes the projection

residual onto Si for each sample in the cluster Ci and selects

m̄∗
i “real” data with smaller residuals (flavescent points in

Fig. 3). See the setting of m̄∗
i in Sec. 3.4. In this way,

the selected samples approximately lie in the correct intrin-

sic subspace with high probability and serve as “real data”

for spanning the subspace Si. Moreover, the discrimina-

residue

Samples (wrong label)

Fake sample

Sample (correct label)

Figure 3: Illustration on real/fake sampling. Real data (with

correct clustering label) and fake data are sampled from an

erroneous cluster Ci which spans an inaccurate subspace es-

timation Ŝi. Real data have much smaller projection resid-

uals onto the subspace Si learned by the discriminator Di

than sampled fake data, thus they can be distinguished by

Di. Best viewed in color.

tor is powerful enough to handle the possible noise in these

selected real data. Such a novel projection residual based

strategy for sampling real data is adopted to closely match

the energy-based discriminator for clustering quality evalu-

ation and its validity is verified by our experiments.

To produce fake data, for each cluster Ci, the sampling

layer in the generator performs random sampling from the

estimated subspace Ŝi (see purple point in Fig. 3). Since

directly sampling is non-differentiable, we employ the re-

parameterization trick in [11] to enable differentiable sam-

pling. Concretely, for each cluster Ci of mi samples, the

sampling layer first samples m̄∗
i random vectors αt ∈ R

mi

from the uniform distribution within (0, 1] and then gener-

ates m̄∗
i fake data as z̄t =

∑mi

j=1 αtjzij (t = 1, . . . , m̄∗
i ),

where αtj denotes the j-th entry in αt. As for the current

training state αts are fixed, the gradient can be propagated

to the encoder through the representations zij s. Compared

with explicitly computing Ŝi and then sampling fake data,

producing fake data as above is more efficient.

3.3. Discriminator

We build the discriminator to implement an energy func-

tion which assigns low energy to the regions near the data

subspace and higher energy to other regions. Since for each

cluster Ci, the discriminator D aims to verify whether its

real data zi and fake data z̄i belong to the same intrinsic

subspace, it only needs to learn a subspace discriminative

model that fits the desired intrinsic subspace for each clus-

ter. For cluster Ci, let the basis of the subspace Si learned

by the discriminator be parameterized by Ui ∈ R
d×ri

where ri denotes the subspace dimension. Then as shown

in Fig. 3, the discriminator can distinguish real data from

fake ones by their projection residuals onto Ui:

Lr(zij ) = ‖zij −UiU
T
i zij‖22, (5)



as real samples will be closer to the subspace than those fake

ones if the clusters are not accurate. We use the above pro-

jection residual to define the probability of a sample belong-

ing to subspace Si which is the output of the discriminator

Di, namely, Di(zij ) = P(zij ∈ Si) ∝ exp(−Lr(zij )).
Substituting it to Eqn. (4) gives the following objective to

train the discriminator Di of cluster Ci:

min
Ui

LDi
:=

1

m̄∗
i

m̄∗
i∑

j=1

Lr(zij ) + [ε− Lr(z̄ij )]+, (6)

where [·]+ = max(0, ·) is an additional margin loss with a

small positive margin parameter ε, inspired by [37]. Con-

sidering all K clusters, the objective for training the dis-

criminator is

min
U1,··· ,UK

LD :=
1

K

K∑
i=1

LDi
, (7)

where each column Ui,j in all Ui (i = 1, · · · ,K) obeys

‖Ui,j‖22 = 1. To establish one-to-one correspondence be-

tween the cluster Ci and Ui to compute the loss LD, for

all candidates Ui, each Ci computes its average projection

residual onto them and chooses the one of smallest average

projection residual 1
|Ci|

∑
zi∈Ci

‖zi − UjU
T
j zi‖22. If mul-

tiple clusters compete for the same Ui, Ui will choose the

one with smallest average projection. For any cluster with-

out a matched Ui, we use the QR decomposition on its fea-

ture matrix constituted by zij s to compute its corresponding

Ui. In this way, learning of the generator and discriminator

is consistent, since at each time the cluster Ci will always

find the Uj that is closest to its intrinsic subspace.

To promote separability of subspaces corresponding to

different clusters, we introduce the regularization term

R1 = β1

∑
i �=j ‖UT

i Uj‖2F , where β1 > 0 is a constant.

It also benefits clustering, via the discriminator D, by en-

couraging the generator G to produce representations dis-

criminative for different subspaces. Although we do not re-

quire the basis in Ui to be strictly orthonormal, we still use

R2 = β2

∑K
i=1 ‖UT

i Ui − I‖2F as regularization to reduce

redundancy in each Ui, where β2 > 0 is a constant and I is

the identity matrix with compatible dimensions.

Thus for the discriminator, the final training objective is

min
U1,··· ,UK

LD +R1 +R2. (8)

The discriminator in DASC can be implemented by K lin-

ear networks of two fully connected layers. Besides, in each

network the two layers share their parameters Ui. For input

data zj , the outputs of the first and second layers are respec-

tively Uizj and UiU
T
i zj . By minimizing the discriminator

loss, the parameter Ui (1 ≤ i ≤ K) can be learned.

Obviously, the discriminator in DASC is a variant of the

auto-encoder yet with more simplicity than the ones used

for image generation in [1, 37], since ours has only two

linear mapping layers. Such appealing simplicity is bene-

fited from the self-expressive layer in G, which offers con-

venience to utilize linear subspace structure to design the

discriminator. In contrast, the auto-encoders in [1, 37] are

much deeper and involve non-linear mappings, since the

data structure remains unknown and thus complex auto-

encoders are necessary to learn the data structure.

3.4. Training and Clustering

We are ready to define training objective of the gen-

erator G. Following the adversarial learning scheme, we

encourage the generator G to minimize La = 1
K

∑K
i=1

1
m̄∗

i

∑m̄∗
i

j=1 Lr(z̄ij ), i.e., to encourage the generated fake

data to be closer to the subspace learned by the discrimi-

nator indicating higher clustering quality through tuning the

representation learning and subspace clustering results from

G. Combining this adversarial loss La with the sample re-

construction loss and the self-expression loss gives the final

training objective of G:

min
Θ

LG(Θ) := La + λ1‖X − X̂‖2F
+ λ2‖Z −ZΘc‖2F + λ3‖Θc‖2F , (9)

where X = [X1,X2, · · · ,Xn] denotes all the input sam-

ples and X̂ denotes the reconstruction of X by the auto-

decoder. Here Θ denotes the parameters of the generator,

including the parameters in encoder and decoder, and the

representation coefficients Θc in the self-expressive layer as

well. The second term denotes the reconstruction loss of the

auto-encoder, while the last two terms correspond to self-

expressive loss Ls(Θc;Z) in Eqn. (2). F -norm penalty on

Θc is adopted, since compared with the non-smooth penalty

term, e.g. the �1 norm, it can be learned more easily and can

also achieve comparable or even better performance [9].

We pre-train the generator G without considering the dis-

criminator D at first, i.e., minimizing the generator loss in

Eqn. (9) while discarding the first term La. In this way,

the generator can produce reasonably good initial represen-

tations. Then we train the whole DASC network as fol-

lows. First, we initialize the discriminator parameters Ui ∈
R

d×ri by the following method. See Sec. 4 for the setting

of ri. We apply NCut on the affinity matrix Λ to cluster

the latent representations. Then we use the representations

falling in cluster Ci to compute Ui via QR decomposition.

As the pre-trained generator gives relatively good clustering

results, such a strategy initializes the model better than ran-

dom initialization. During the joint training of discrimina-

tor and generator, as the architecture of the discriminator is

much simpler than the generator, we asynchronously update

D and G for 5 times and 1 time within each epoch respec-

tively. For cluster Ci of mi data points, we set the number

m̄∗
i of real and fake data to αmi (α ∈ [0.8, 0.95]) which



(a) Mnist (b) ORL (c) Extended YaleB

(d) Umist (e) COIL-20 (f) COIL-100

Dataset # Class # Images/class Total # Size Difficulty

Mnist 10 100 1000 28× 28 deformation
ORL 40 10 400 32× 32 deformation, pose and expression
YaleB 38 64 2432 48× 42 illumination
Umist 20 24 480 32× 32 deformation and very different pose

COIL-20 20 72 1400 32× 32 deformation and rotation
COIL-100 100 72 7200 32× 32 deformation and rotation

(g) Statistics of the evaluation datasets.

Figure 4: Examples and descriptions of the six testing datasets.

Table 1: Clustering results on Mnist.

Metric SSC ENSC KSSC SSC-OMP EDSC LRR LRSC AE+SSC DSC-Net-L1 DSC-Net-L2 DASC

ACC 0.4530 0.4983 0.5220 0.3400 0.5650 0.5386 0.5140 0.4840 0.7280 0.7500 0.8040
NMI 0.4709 0.5495 0.5623 0.3272 0.5752 0.5632 0.5576 0.5337 0.7217 0.7319 0.7800
PUR 0.4940 0.5483 0.5810 0.3560 0.6120 0.5684 0.5550 0.5290 0.7890 0.7991 0.8370

Table 2: The channel number of generator in DASC used

for ORL, Extended YaleB, and Umist.

Dataset
encoder-1 encoder-2 encoder-3
/decoder-3 /decoder-2 /decoder-1

ORL 5 3 3
YaleB 10 20 30
Umist 15 10 5

works well in all experiments. Both pre-training and fine-

tuning adopt the Adam algorithm [10]. But their learning

rates are 10−3, the same as [9], and 2× 10−4 respectively.

During testing, we perform spectral clustering on the

learned affinity matrix Λ output by the generator G. For

fairness, we use the NCut algorithm as in [9].

4. Experiments
We evaluate the clustering performance of our proposed

DASC with three subspace clustering tasks: handwrit-

ten digit recognition, face clustering and object clustering.

Among them, the first two tasks are relatively easier, since

handwriting and face images approximately lie on a union

of linear subspaces [4, 5, 28, 29, 36, 40, 41]. We compare

DASC with state-of-the-art subspace clustering methods,

including sparse subspace clustering (SSC) [4,5], elastic net

subspace clustering (ENSC) [34], kernel SSC (KSSC) [21],

SSC by orthogonal matching pursuit (SSC-OMP) [35], ef-

ficient dense subspace clustering (EDSC) [8], low-rank

representation (LRR) [14], low-rank subspace clustering

(LRSC) [26], the latest deep subspace clustering network

(DSC-Net) [9], and SSC with pre-trained convolutional

auto-encoder features. For all baselines, we use their re-

leased source codes and tune their performance to be best.

In our experiments, we fix parameters of DASC as β1 =
β2 = 0.01, λ1 = 0.5 and ε = 0.1. If the encoder of the

generator in DASC has three layers, their kernel sizes are

always set to 5× 5, 3× 3 and 3× 3, respectively. For other

encoders of different layers, their kernel size setting will be

introduced in the corresponding section. In all experiments,

the stride of these kernels is fixed as 2. The decoder al-

ways has a symmetrical structure to the encoder. We use

ReLU [12] as the non-linear activations. For fair compar-

ison, the DSC-Net (DSC-Net-L1 and DSC-Net-L2) always

adopts the same architecture as our generator in DASC, in-

cluding its encoder, self-expressive layer and decoder. We

adopt following popular clustering metrics to measure the

clustering performance: accuracy (ACC), normalized mu-

tual information (NMI) [27] and purity (PUR) [16].

4.1. Handwritten Digit Recognition

We evaluate DASC on the Mnist dataset [13] for hand-

written digit recognition. We randomly select 100 images

for each digit, resulting in a subset of 1,000 images. Exam-

ples are shown in Fig. 4. Both the encoder and decoder in

the generator G of DASC have three layers which in the en-

coder respectively have 20, 10 and 5 channels. The output



Table 3: Clustering results on ORL, Extended YaleB, and Umist.

Dataset Metric SSC ENSC KSSC SSC-OMP EDSC LRR LRSC AE+SSC DSC-Net-L1 DSC-Net-L2 DASC

ORL

ACC 0.7425 0.7525 0.7143 0.7100 0.7038 0.8100 0.7200 0.7563 0.8550 0.8600 0.8825
NMI 0.8459 0.8540 0.8070 0.7952 0.7799 0.8603 0.8156 0.8555 0.9023 0.9034 0.9315
PUR 0.7875 0.7950 0.7513 0.7463 0.7138 0.8225 0.7542 0.7950 0.8585 0.8625 0.8925

YaleB

ACC 0.7354 0.7537 0.6921 0.7372 0.8814 0.8499 0.7931 0.7480 0.9681 0.9733 0.9856
NMI 0.7796 0.7915 0.7359 0.7803 0.8835 0.8636 0.8264 0.7833 0.9687 0.9703 0.9801
PUR 0.7467 0.7654 0.7183 0.7542 0.8800 0.8623 0.8013 0.7597 0.9711 0.9731 0.9857

Umist

ACC 0.6904 0.6931 0.6531 0.6438 0.6937 0.6979 0.6729 0.7042 0.7242 0.7312 0.7688
NMI 0.7489 0.7569 0.7377 0.7068 0.7522 0.7630 0.7498 0.7515 0.7556 0.7662 0.8042
PUR 0.6554 0.6628 0.6256 0.6171 0.6683 0.6670 0.6562 0.6785 0.7204 0.7276 0.7688

dimension of the encoder in G is 80. We set basis number

ri in Ui (i = 1, · · · ,K) to 10, λ2 = 0.1 and λ3 = 1.0.

Table 1 summarizes the clustering results on Mnist.

DASC outperforms the baselines in all three metrics.

Specifically, it improves over the second best DSC-Net-L2

by 5.40%, 4.81% and 3.79% in terms of ACC, NMI and

PUR, respectively. Moreover, DASC achieves much bet-

ter clustering results than the shallow subspace clustering

methods, e.g., SSC and LRR. This is because compared

with shallow methods, DASC uses a multi-layer convolu-

tional auto-encoder as the feature extractor. So DASC can

well handle translation, rotation and shifting in the hand-

written images (see Fig. 4 (a)) and map input data into a

union of linear subspaces. Besides, the adversarial learning

in DASC is effective at benefiting the representation learn-

ing and clustering. Concretely, it improves about 5.40%
over its baseline DSC-Net on the commonly used ACC met-

ric. This shows DASC can improve itself by quantifying the

current clustering results.

4.2. Face Clustering

We then evaluate DASC on three widely used face

databases: ORL [23], Extended YaleB (YaleB for short) [6],

and Umist [30]. As shown in Fig. 4 (b)-(d), these datasets

are challenging due to their different properties. For the

40 subjects in ORL, each category has only 10 face images

taken with varying poses and expressions. In comparison,

YaleB is relatively simpler,containing 38 subjects and 64

near frontal images per subject under different illumination.

Although Umist only contains 20 persons, each with only

24 images is taken under very different poses. For these

datasets, both the encoder and decoder in the generator G
have three layers. Their architecture details are given in

Table 2. For ORL, YaleB and Umist, the outputs of the en-

coder in G have respectively 80, 1,080 and 80 dimensions.

We set the number ri of basis in Ui as 10, λ3 = 1, and

respectively set λ2 as 0.1, 3.0 and 0.1 for the three datasets.

Table 3 reports clustering results on these datasets. One

can observe that DASC consistently outperforms the base-

lines for all three metrics. On the ORL and Umist datasets,

DASC respectively improves by 2.25% and 3.76% over

the second best DSC-Net-L2 on ACC. For both NMI and

PUR metrics, DASC also brings about 3% improvement on

ORL and improves by about 4% on Umist over the state-

of-the-arts. As aforementioned, compared with ORL and

Umist, YaleB is relatively simpler (see Fig. 4) and all meth-

ods perform very well. However, DASC still brings about

1.23% improvement even though state-of-the-art accuracy

on YaleB is as high as 97.33%. All these results clearly

prove the superior effectiveness and robustness of DASC.

These results also clearly demonstrate that deep clus-

tering methods except AE+SSC perform much better than

the shallow ones, benefiting from integrating representa-

tion learning with self-expression learning. The deep auto-

encoder extracts more powerful representations and the fol-

lowing self-expression layer enforces the representations to

favorably locate in a union of linear subspaces, effectively

getting rid of strict linear subspace assumptions. Compar-

atively, DASC outperforms the DSC-Net, including both

DSC-Net-L1 and DSC-Net-L2, on the three testing datasets

w.r.t. all metrics. This outstanding performance is attributed

to the adversarial learning between generator and discrimi-

nator in DASC. Unlike DASC and DSC-Net, the AE+SSC

method does not benefit much from using a deep auto-

encoder. This is because the deep auto-encoder only con-

siders the reconstruction of original images, and it does not

guarantee the latent feature to lie in the linear subspaces

without the self-expressive layer. Meanwhile, although SSC

works well on data lying in linear subspaces, it cannot well

handle data from non-linear subspaces. So it does not gain

much benefit from the deep auto-encoder either.

4.3. Object Clustering

Here we evaluate DASC on the most challenging object

clustering task, using the COIL-20 [18] and COIL-100 [17]

datasets which provide various objects as shown in Fig. 4

(e)-(f). COIL-20 has 1,440 toy images from 20 classes, and

COIL-100 contains 7,200 images for 100 objects. In both

datasets, each object is taken with poses varying at an in-

terval of 5 degrees, producing totally 72 images per object.



Table 4: Clustering results on COIL-20 and COIL-40.

Dataset Metric SSC ENSC KSCC SSC-OMP EDSC LRR LRSC AE+SSC DSC-Net-L1 DSC-Net-L2 DASC

COIL-20

ACC 0.8631 0.8760 0.7087 0.6410 0.8371 0.8118 0.7416 0.8711 0.9314 0.9368 0.9639
NMI 0.8892 0.8952 0.8243 0.7412 0.8828 0.8747 0.8452 0.8990 0.9353 0.9408 0.9686
PUR 0.8747 0.8892 0.7497 0.6667 0.8585 0.8361 0.7937 0.8901 0.9306 0.9397 0.9632

COIL-40

ACC 0.7191 0.7426 0.6549 0.4431 0.6870 0.6493 0.6327 0.7391 0.8003 0.8075 0.8354
NMI 0.8212 0.8380 0.7888 0.6545 0.8139 0.7828 0.7737 0.8318 0.8852 0.8941 0.9196
PUR 0.7716 0.7924 0.7284 0.5250 0.7469 0.7109 0.6981 0.7840 0.8646 0.8740 0.8972

10% 20% 30% 40%
0.65

0.7

0.75

0.8

0.85

0.9

Noise Ratio

A
C

C

10% 20% 30% 40%
0.7

0.75

0.8

0.85

0.9

0.95

Noise Ratio

N
M

I

10% 20% 30% 40%
0.7

0.75

0.8

0.85

0.9

0.95

Noise Ratio

P
U

R

DSC−Net−L1 DSC−Net−L2 DASC

Figure 5: Clustering results on the noisy COIL-20.

This implies that the images are not distributed in a union

of linear subspaces and thus are more challenging. Due to

computational memory limit, we select the first 40 classes in

COIL-100 with totally 2,880 images for evaluation, which

we call COIL-40. For both COIL-20 and COIL-40, the gen-

erator encoders in DASC have only one layer of 15 and 20

channels respectively. The kernel size is 3 × 3. Accord-

ingly, the output feature dimension of the generator encoder

are respectively 3,840 and 5,120 on COIL-20 and COIL-40.

We uniformly set the basis number ri in Ui as 30, and set

λ2 = 15.0 and λ3 = 1.0.

Table 4 reports the results. One can observe that DASC

achieves the best clustering performance. Specifically, com-

pared with shallow subspace clustering methods on COIL-

20, it brings about 8.79%, 7.34% and 7.40% improvement

over the best shallow method ENSC in terms of ACC, NMI

and PUR metrics. On the more challenging COIL-40, it im-

proves by 9.28%, 8.16% and 10.48% respectively. These

results clearly verify that deep solution offered by DASC to

subspace clustering is more favorable and effective. Com-

pared with another deep subspace clustering method DSC-

Net, on COIL-20 our DASC outperforms it by about 2.71%,

2.78% and 2.35% on ACC, NMI and PUR respectively, and

on COIL-40 it improves 2.79%, 2.55% and 2.32%. As they

share the same network for latent representation learning,

the better performance of DASC is benefited from adversar-

ial learning which is effective at providing complementary

supervision for clustering improvement.

Finally, to more comprehensively compare our proposed

DASC with DSC-Net, we evaluate them in a noisy scenario.

For each image in COIL-20, we respectively randomly con-

vert 10% ∼ 40% of pixels to random values in [0, 255] for

evaluation. As reported in Fig. 5, w.r.t. different noise ratios,

our DASC always achieves the best performance in terms

of all three metrics. When the noise ratio is 10% ∼ 30%,

DASC respectively brings about at least 2.97%, 3.10% and

3.32% over the second-best DSC-Net-L1 in terms of ACC.

When the noise ratio increases to 40%, DASC improves by

about 4.32%. On NMI and PUR, DASC makes at least

2.99% and 3.82% improvements, respectively. Compared

with noiseless cases, such improvements are more notable.

This is because DASC can handle more complex distribu-

tions incurred by noise benefiting from adversarial learning,

while the deep auto-encoder in absence of the adversarial

learning generally fails which results in the quick drop of

the performance of DSC-Net.

5. Conclusion

We proposed a novel deep adversarial subspace cluster-

ing (DASC) model. It adopts adversarial learning to ef-

fectively supervise sample representation learning and sub-

space clustering. The discriminator of DASC evaluates the

current clustering performance and feeds back the evalu-

ation information to the generator to produce better sam-

ple representations and subspace clustering. Extensive ex-

perimental results demonstrated the superior advantages of

DASC on subspace clustering problems over state-of-the-

arts, including the latest deep learning based method.
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