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I. PROOF OF LEMMA 2

Proof. Assume that rankm(F) = kF , where kF
i = rank(F̄ (i)) (i = 1, · · · , n3). Then, we have k̂ = max (kF

1 , · · · ,kF
n3
). Since

the rank of the matrix F̄ (i) is kF
i , it can be factorized into the matrix product form F̄ (i) = Ĝ(i)Ĥ(i), where Ĝ(i) ∈ Cn1×kF

i

and Ĥ(i) ∈ CkF
i ×n2 are the i-th block diagonal matrices of Ĝ ∈ Cn1n3×(

∑n3
i=1 kF

i ) and Ĥ ∈ C(
∑n3

i=1 kF
i )×n2n3 , respectively,

and they meet rank(Ĝ(i)) = rank(Ĥ(i)) = kF
i . Then, let Ḡ(i) = [Ĝ(i),0] ∈ Cn1×k̂ and H̄(i) = [Ĥ(i);0] ∈ Ck̂×n2 , where

Ḡ(i) ∈ Cn1×k̂ and Ĥ(i) ∈ Ck̂×n2 are the i-th block diagonal matrices of Ḡ ∈ Cn1n3×k̂n3 and H̄ ∈ Ck̂n3×n2n3 , respectively.
Therefore, we have C̄ = ĜĤ = ḠH̄ . From Lemma 1, we know that for any three tensors of proper sizes, Ē = X̄Ȳ and
E = X ∗Y are equivalent. Therefore, we can obtain C = G ∗H, where G ∈ Rn1×k̂×n3 and H ∈ Rk̂×n2×n3 are two tensors
of smaller sizes and they meet rankt(G) = rankt(H) = k̂.

Now we prove the second property. Assume that rankm(A) = rA and rankt(A) = r̂A, where rAi = rank(Ā(i))
(i = 1, · · · , n3) and r̂A = max (rA1 , · · · , rAn3

). Let Z = A ∗ B. Similarly, suppose that rankm(B) = rB, rankt(B) = r̂B,
rankm(Z) = rZ , and rankt(Z) = r̂Z . On the other hand, if M ∈ Cn5×n6 and N ∈ Cn6×n7 are two matrices, then we have
rank(MN) ≤ min(rank(M), rank(N)). Thus, we have rZi = rank(Z̄(i)) = rank(Ā(i)B̄(i)) ≤ min (rank(Ā(i)), rank(B̄(i))) =
min (rAi , rBi ). We can further obtain that r̂Z = max (rZ1 , · · · , rZn3

) ≤ min (r̂A, r̂B). So the inequality rankt(A ∗ B) ≤
min (rankt(A), rankt(B)) in Lemma 2 holds.

II. PROOF OF THEOREM 2

Before we prove Theorem 2, we first present two lemmas. Since X̂(i) and Ŷ (i) are the i-th block diagonal matrices

of X̂ and Ŷ , respectively, for brevity, we rewrite the Eq. (6) and (7) as X̂k+1 = C̄k(Ŷ k)∗
(
Ŷ k(Ŷ k)∗

)†
and Ŷ k+1 =(

(X̂k+1)∗X̂k+1
)†

(X̂k+1)∗C̄k, respectively.

Lemma 3. Assume that the sequence {(X̂k, Ŷ k,Ck)} is generated by Algorithm 1, i.e., they meet X̂k+1 = C̄k(Ŷ k)∗
(
Ŷ k(Ŷ k)∗

)†
∈ Cn1n3×

∑n3
i=1 rk

i and Ŷ k+1 =
(
(X̂k+1)∗X̂k+1

)†
(X̂k+1)∗C̄k ∈ C

∑n3
i=1 rk

i ×n2n3 . Suppose that UX̂k+1ΣX̂k+1V ∗X̂k+1
and

UŶ kΣŶ kV ∗Ŷ k
are the skinny SVD of X̂k+1 and Ŷ k, respectively. Then the sequence {(X̂k, Ŷ k,Ck)} satisfies the following

equations:

‖X̂k+1Ŷ k+1 − X̂kŶ k‖2F = ‖UX̂k+1U
∗
X̂k+1(C̄

k − X̂kŶ k)‖2F + ‖(In1n3 −UX̂k+1U
∗
X̂k+1)(C̄

k − X̂kŶ k)VŶ kV
∗
Ŷ k‖2F

(22)

and

‖X̂kŶ k − C̄k‖2F − ‖X̂k+1Ŷ k+1 − C̄k‖2F = ‖X̂k+1Ŷ k+1 − X̂kŶ k‖2F . (23)

Proof. Since X̂k+1 = UX̂k+1U∗X̂k+1
X̂k+1 and Ŷ k = Ŷ kVŶ kV ∗Ŷ k

, we have

X̂k+1Ŷ k − X̂kŶ k = C̄k(Ŷ k)∗
(
Ŷ k(Ŷ k)∗

)†
Ŷ k − X̂kŶ k

= (C̄k − X̂kŶ k)VŶ kV
∗
Ŷ k .

(24)

P. Zhou, Z. Lin, and C. Zhang are with Key Lab. of Machine Perception (MoE), School of EECS, Peking University, P. R. China. Z. Lin and C. Zhang
are also with Cooperative Medianet Innovation Center, Shanghai, China. P. Zhou is now with Department of Electrical & Computer Engineering, National
University of Singapore, Singapore. (e-mails: pzhou@pku.edu.cn, zlin@pku.edu.cn, and chzhang@cis.pku.edu.cn).

C. Lu is with the Department of Electrical and Computer Engineering, National University of Singapore, Singapore (e-mail: canyilu@gmail.com).



2

On the other hand, we can obtain the following equation:

X̂k+1Ŷ k+1 − X̂k+1Ŷ k =UX̂k+1U
∗
X̂k+1X̂

k+1Ŷ k+1 −UX̂k+1U
∗
X̂k+1X̂

k+1Ŷ k

=UX̂k+1U
∗
X̂k+1X̂

k+1
(
(X̂k+1)∗X̂k+1

)†
(X̂k+1)∗C̄k −UX̂k+1U

∗
X̂k+1(X̂

k+1Ŷ k − X̂kŶ k + X̂kŶ k)

=UX̂k+1U
∗
X̂k+1C̄

k −UX̂k+1U
∗
X̂k+1

(
X̂kŶ k +(C̄k − X̂kŶ k)VŶ kV

∗
Ŷ k

)
=UX̂k+1U

∗
X̂k+1(C̄

k − X̂kŶ k)(In2n3
− VŶ kV

∗
Ŷ k).

(25)

Then the following equation holds:

X̂k+1Ŷ k+1 − X̂kŶ k =X̂k+1Ŷ k+1 − X̂k+1Ŷ k + X̂k+1Ŷ k − X̂kŶ k

=(In1n3 −UX̂k+1U
∗
X̂k+1)(C̄

k − X̂kŶ k)VŶ kV
∗
Ŷ k +UX̂k+1U

∗
X̂k+1(C̄

k − X̂kŶ k).
(26)

Note that
〈
(In1n3

−UX̂k+1U∗X̂k+1
)(C̄k − X̂kŶ k)VŶ kV ∗Ŷ k

, UX̂k+1U∗X̂k+1
(C̄k − X̂kŶ k)

〉
= 0, since they are orthogonal

to each other. Thus, we can obtain

‖X̂k+1Ŷ k+1 − X̂kŶ k‖2F =‖(In1n3
−UX̂k+1U

∗
X̂k+1)(C̄

k − X̂kŶ k)VŶ kV
∗
Ŷ k‖2F + ‖UX̂k+1U

∗
X̂k+1(C̄

k − X̂kŶ k)‖2F .
(27)

Therefore, Eq. (22) holds. We can further establish the following equation:

‖X̂k+1Ŷ k+1 − C̄k‖2F
=‖X̂k+1Ŷ k+1 − X̂kŶ k + X̂kŶ k − C̄k‖2F
=‖X̂k+1Ŷ k+1 − X̂kŶ k‖2F + ‖X̂kŶ k − C̄k‖2F + 2

〈
X̂kŶ k −C̄k, X̂k+1Ŷ k+1 − X̂kŶ k

〉
=‖X̂k+1Ŷ k+1 − X̂kŶ k‖2F + ‖X̂kŶ k − C̄k‖2F + 2

〈
X̂kŶ k −C̄k, (In1n3 −UX̂k+1U

∗
X̂k+1)(C̄

k − X̂kŶ k)VŶ kV
∗
Ŷ k

+UX̂k+1U
∗
X̂k+1(C̄

k − X̂kŶ k)
〉

=‖X̂k+1Ŷ k+1 − X̂kŶ k‖2F + ‖X̂kŶ k − C̄k‖2F − 2
(
‖(In1n3

−UX̂k+1U
∗
X̂k+1)(C̄

k − X̂kŶ k)VŶ kV
∗
Ŷ k‖2F

+‖UX̂k+1U
∗
X̂k+1(C̄

k − X̂kŶ k)‖2F
)

=‖X̂k+1Ŷ k+1 − X̂kŶ k‖2F + ‖X̂kŶ k − C̄k‖2F − 2‖X̂k+1Ŷ k+1 − X̂kŶ k‖2F
=‖X̂kŶ k − C̄k‖2F − ‖X̂k+1Ŷ k+1 − X̂kŶ k‖2F .

(28)

Therefore, Eq. (23) holds.

Then, we present anther lemma, which will be used later.

Lemma 4. Suppose that A ∈ Rn1×n2×n3 , B ∈ Rn2×n4×n3 , F ∈ Rn1×n4×n3 and H ∈ Rn1×n4×n3 are four tensors. If they
satisfy the following inequality:

‖A ∗B −F‖2F ≤ ‖A ∗B −H‖2F , (29)

then we have

‖ĀB̄ − F̄ ‖2F ≤ ‖ĀB̄ − H̄‖2F . (30)

Proof. From Lemma 1 in the paper, we know that A ∗ B −F and ĀB̄ − F̄ are equivalent to each other. A ∗ B −H and
ĀB̄− H̄ are also equivalent. Thus, we can obtain ‖A ∗B−F‖2F = 1

n3
‖ĀB̄− F̄ ‖2F and ‖A ∗B−H‖2F = 1

n3
‖ĀB̄− H̄‖2F .

Thus, if inequality (29) holds, then inequality (30) holds.

Now, we prove Theorem 2.

Proof. Assume that f(X̂, Ŷ ,C) = 1
2n3
‖X̂Ŷ − C̄‖ is the objective function. From Lemma 3, the following equation holds.

f(X̂k, Ŷ k,Ck)− f(X̂k+1, Ŷ k+1,Ck) =
1

2n3
‖X̂kŶ k − C̄k‖2F −

1

2n3
‖X̂k+1Ŷ k+1 − C̄k‖2F

=
1

2n3
‖X̂k+1Ŷ k+1 − X̂kŶ k‖2F .

(31)
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On the other hand, we note that Ck+1 is the optimal solution to problem (5) in the paper:

Ck+1 = argmin
PΩ(C−M)=0

‖X k+1 ∗Yk+1 − C‖2F . (32)

At the same time, we note that PΩ(Ck −M) = 0, i.e., Ck is a feasible solution to problem (32). So the following inequality
holds.

‖X k+1 ∗Yk+1 − Ck+1‖2F ≤ ‖X
k+1 ∗Yk+1 − Ck‖2F , (33)

From Lemma 4, we can obtain

‖X̄k+1Ȳ k+1 − C̄k+1‖2F ≤ ‖X̄k+1Ȳ k+1 − C̄k‖2F . (34)

Since X̂k+1Ŷ k+1 = X̄k+1Ȳ k+1, we have

‖X̂k+1Ŷ k+1 − C̄k+1‖2F ≤ ‖X̂k+1Ŷ k+1 − C̄k‖2F . (35)

Then, it follows that

f(X̂k, Ŷ k,Ck)− f(X̂k+1, Ŷ k+1,Ck+1)

=
1

2n3
‖X̂kŶ k − C̄k‖2F −

1

2n3
‖X̂k+1Ŷ k+1 − C̄k+1‖2F

=
1

2n3
‖X̂kŶ k − C̄k‖2F −

1

2n3
‖X̂k+1Ŷ k+1 − C̄k‖2F +

1

2n3
‖X̂k+1Ŷ k+1−C̄k‖2F−

1

2n3
‖X̂k+1Ŷ k+1−C̄k+1‖2F

≥ 1

2n3
‖X̂k+1Ŷ k+1 − X̂kŶ k‖2F .

(36)

Summing all the inequality (36) for all k, we obtain

f(X̂1, Ŷ 1,C1)− f(X̂n, Ŷ n,Cn) =
1

2n3

n∑
i=1

‖X̂i+1Ŷ i+1 − X̂iŶ i‖2F < +∞. (37)

Thus, we can obtain the following equation:

lim
n→+∞

‖X̂n+1Ŷ n+1 − X̂nŶ n‖2F = 0, (38)

Assume that UX̂n+1ΣX̂n+1V ∗X̂n+1
and UŶ nΣŶ nV ∗Ŷ n

are the skinny SVD of X̂n+1 and Ŷ n, respectively. From Lemma 3,
we can further obtain

lim
n→+∞

‖(In1n3
−UX̂n+1U

∗
X̂n+1)(C̄

n − X̂nŶ n)VŶ nV
∗
Ŷ n‖2F + ‖UX̂n+1U

∗
X̂n+1(C̄

n − X̂nŶ n)‖2F = 0, (39)

So, the following two equations hold:

lim
n→+∞

‖(In1n3−UX̂n+1U
∗
X̂n+1)(C̄

n−X̂nŶ n)VŶ nV
∗
Ŷ n‖2F =0 (40)

and

lim
n→+∞

‖UX̂n+1U
∗
X̂n+1(C̄

n − X̂nŶ n)‖2F = 0. (41)

We can further establish the following equations:

lim
n→+∞

UX̂n+1U
∗
X̂n+1(C̄

n − X̂nŶ n) = 0. (42)

Since Ŷ n is bounded, VŶ nV ∗Ŷ n
is bounded. Thus, we can establish the following equation:

lim
n→+∞

UX̂n+1U
∗
X̂n+1(C̄

n − X̂nŶ n)VŶ nV
∗
Ŷ n = 0. (43)

So we can obtain

0 = lim
n→+∞

(In1n3
−UX̂n+1U

∗
X̂n+1)(C̄

n − X̂nŶ n)VŶ nV
∗
Ŷ n = lim

n→+∞
(C̄n − X̂nŶ n)VŶ nV

∗
Ŷ n . (44)

Since (Ŷ n)∗ = VŶ nV ∗Ŷ n
(Ŷn)

∗, (X̂n+1)∗ = (X̂n+1)∗UX̂n+1U∗X̂n+1
, and Ŷ n, X̂n+1 are bounded, we have

0 = lim
n→+∞

(X̂n+1)∗UX̂n+1U
∗
X̂n+1(C̄

n − X̂nŶ n) = lim
n→+∞

(X̂n+1)∗(C̄n − X̂nŶ n) (45)
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and

0 = lim
n→+∞

(C̄n − X̂nŶ n)VŶ nV
∗
Ŷ n(Ŷ

n)∗ = lim
n→+∞

(C̄n − X̂nŶ n)(Ŷ n)∗. (46)

Since the sequence {(X̂k, Ŷ k,Ck)} generated by our algorithm is bounded, there is a subsequence {(X̂kj , Ŷ kj ,Ckj )} that
converges to a point (X̂?, Ŷ?,C?). Therefore, the following two equations hold:

(C̄? − X̂?Ŷ?)(Ŷ?)
∗ = 0, (47)

(X̂?)∗(C̄? − X̂?Ŷ?) = 0. (48)

On the other hand, we update Ck+1 = X k ∗Yk+PΩ(M−X k ∗Yk) at each iteration. Thus, C? always satisfies the following
two equations.

PΩc(C? −X ? ∗Y?) = 0,

PΩ(C? −M) = 0.
(49)

And we can always find Q? that meets the following equations.

PΩ(C? −X ? ∗Y?) +Q? = 0. (50)

So (X̂?, Ŷ?,C?) is a KKT point of problem (13) in the paper.


