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I. PROOF OF LEMMA 2

Proof. Assume that rank,, (F) = k7, where k7 = rank(F() (i = 1,--- ,ng). Then, we have k = max (k7 - . k7). Since
the rank of the matrix F(") is k7, it can be factorized into the matrix product form F) = G() ﬁ (' Where G(l Craxky
and H(®) e Ck *"2 are the i-th block diagonal matrices of G € Crnax (T2 k) and H € C(Z21 kT )xnans , Tespectively,
and they meet rank(G") = rank(H() = k7. Then, let G® =[G, 0] € e Cmxk and HO) = = [H";0] € (C’”"Z, where
G® e Cm*Fk and H® e CF*"2 are the i-th block diagonal matrices of G € C™1"3Xkns and H € (C’“"JX“WJ respectively.
Therefore, we have C = GH = GH. From Lemma 1, we know that for any three tensors of proper sizes, E = XY and
€ = X x Y are equivalent. Therefore, we can obtain C = G x H, where G € R Xkxn3 and H e REX12X73 are two tensors
of smaller sizes and they meet rank(G) = rank(H) = k.

Now we prove the second property. Assume that rank,,(\A) = 7 and rank;(A) = 74, where r* = rank(A®)
(i=1,--,n3) and #* = max (r{*,--- ,r7}). Let Z = A« B. Similarly, suppose that rank,,(B) = 753, rank,(B) = 5,
rank,,(Z) = rZ, and rank;(Z) = #Z. On the other hand if M € C**"s and N € C"*"7 are two matrices, then we have
rank(M N) < min(rank(M), rank(IN)). Thus we have rZ = rank(Z(l)) = rank(A® B®) < min (rank(A®), rank(B")) =
min (r74, rB8). We can further obtain that #£ = max (rlz,~~ rZ) < min (74, 78). So the inequality rank;(A % B) <

232 ’ ' ng

<
min (rank;(A), rank,(B)) in Lemma 2 holds. O

II. PROOF OF THEOREM 2
Before we prove Theorem 2, we first present two lemmas. Since X () and Y are the i-th block dia;gonal matrices
of X and Y, respectively, for brevity, we rewrite the Eq. (6) and (7) as X*t! = Ck(Y'F)* (Y’%Y’“)*) and Y1 =

N N T4 _
((Xk“)*Xk“) (XF+1)*CF, respectively.
AL PN T
Lemma 3. Assume that the sequence {(X*,Y* C*)} is generated by Algorithm 1, i.e., they meet X*1 = C*(Y'*)* (Yk(Yk)*)

Xk+1
Uy .33V, are the skinny SVD of X*+1 and Y'*, respectively. Then the sequence {(Xk7 Yk, Ck)} satisfies the following
equations:

IXFHY I = XMVFE = U U (CF = XYM+ | (Lniny — Uz U

€ Crms XTI T gpd YR = ((Xk+1)*Xk+1> (Xk+1) CF ¢ CXidirixnang, Suppose that U %413 g1 V3 and

)(C* = XY Ve Ve, 1%

Xk+1
(22)
and
HXk?k _ C‘rk”2 _ ”Xk—&-lYk—&-l _ C‘rlf”% — ”Xk—i-lf/k—i-l _ Xk?kH% (23)
Proof. Since X*+1 = UXkHU;(HleH and V¥ = Y*Vg Vi, we have
XkHLYk  ghpk = Gh(pky (Yk(Yk) ) vk _ Xkyk o

= (C*F = XMYF)Vp Vg,
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On the other hand, we can obtain the following equation:

Xt _ REHYE UL, XY UL, U

v k+1yk
Xk+1 Xk+1X Y

_ Xk+lU;2k+le+l ((Xk+1)*Xk+1)T (Xk+1)*(_jk ~Ugn Uk,
“UgiirUgu O~ UgrrUg, (57 +(CF — RATMV3 05,
=Ugii1 Uiy (CF = XYF) (Lyny — V3 VL)
(25)
Then the following equation holds:
XHEHLYhtl _ hyk - Xhtlyhtl - ghtlyk | ghtlyk  ghyrk

=(Tnyny — Ugiii U )(CF = XY RV VE, + Ugiii Uk

s 26
(CF — XkYH). (20)

Note that <(Imn3 —Ugin U;zk+1)(c_'k _ XkYk)V?kV;k, Ugiia U}kﬂ(ék _ ka/k)> = 0, since they are orthogonal

to each other. Thus, we can obtain

IXFHY I — XMVFE =l (Loing — Ugini Uz )(CF = XY Vo VIR + Ui Uy (CF = XFYH)| 1.

(27)
Therefore, Eq. (22) holds. We can further establish the following equation:
”XkJrlYkJrl _ CrkH%
:||Xk+1Yk+1 _ Xk}'}k + Xkyk _ C«kHQF
:||Xk+1Yk+1 _ kaka% + HXkYk _ (‘;«kHQF +2 <Xk}’}k —ék,Xk+1Yk+l _ XkYk>
= XEHPEL - XEPEE [ XTE - CFI  2 (XEVE - CF (L, — Ug iU (CF = XYV, W,
+Ugr iUl (CF — X’“f/’“)> (28)
=[| XFYE - XFPYRE 4 | XY - CF|F -2 <||(In1n3 —UginUq ) (CF = XY R )V VE, 15
HU g U (CF = X))
:||Xk+1Yk+1 _ ka/k”%‘ + HXkYk _ C_kaQF _ 2||Xk+1y"vk+l _ XkYkH%-
:H)’{—kl}k _ ék“%‘ _ HXk—&-lYk—i—l _ XkYk||2F
Therefore, Eq. (23) holds. O]

Then, we present anther lemma, which will be used later.
Lemma 4. Suppose that A € R *"2Xns B ¢ Rr2xXnaxXns ¢ RMXMXns gpd H e R™M XXM gre four tensors. If they
satisfy the following inequality:
| A% B~ Fli < | A*B - H|E, (29)
then we have
IAB - F|[} < ||AB — H|[3. (30)
Proof. From Lemma 1 in the paper, we know that A+ B — F and AB — F are equivalent to each other. A « B —H and
AB — H are also equivalent. Thus, we can obtain || A*B—F|%2 = L|AB— F|% and | AxB—-H|%2 = L|AB - H|?2.

T n3 n3

Thus, if inequality (29) holds, then inequality (30) holds. O

Now, we prove Theorem 2.

Proof. Assume that f(X,Y,C) = 5 || XY — C|| is the objective function. From Lemma 3, the following equation holds.

PPN N N 1 PPN _ 1 ~ N _
FREYECH) = JRFLYICY) = o | XFYH = O — g | XFY T - CFE

1 v k+1vyk+1 o kyrk|2 (31)

(Xk—i—li}k‘ _ XkYk +XkYk)



On the other hand, we note that C*! is the optimal solution to problem (5) in the paper:

CkJrl = argmin ||.X'kle * y’““ — CH% (32)
PQ(C*M):O

At the same time, we note that PQ(Ck —M) =0, ie., C" is a feasible solution to problem (32). So the following inequality
holds.

||Xk+1 « PR _ Ckﬂ“% < ||Xk+1 w PR _ Ck||%, (33)

From Lemma 4, we can obtain

||Xk+1}_’k+1 _ (_jk‘HH% < ||)_(k+117k+1 _ Ck”% (34)
Since XF+1y*+l — Xk+1yk+l we have

||Xk+1f,k+1 — CF2 < HX—kHYkH _ CF|2. (35)
Then, it follows that

f(Xk7f/k-7ck) _ f(X—k-+17Yk+1’ck+1)
ZQLWHX}%YI@ _ M| - %%walykﬂ _ o

1 spa ~ 1 & - ~ 1,5 ~ - 1 4 ~ ~ 36
:TWHX]CY]C _ Cﬁ’c”?J _ 2—%‘|Xk+1Yk+l _ CkH% _’_%”Xk-i-lYk-‘rl_Ck”%_Tn?’HXk-‘rlyk-&-l_Ck-&-l”% (36)
1 . ~ ~
>_— Xk+1yk+1 _Xk:Yk: 2 i
o] 1%
Summing all the inequality (36) for all k£, we obtain
SN PO 1 R o
f(le Ylvcl) - f(Xnv ancn) =5 Z ||X’L+1YZ+1 - XZY’L”%’ < +o00. (37)
2n3 =
Thus, we can obtain the following equation:
lim || X"yt - Xnym2 = o, (38)

n——+oo

Assume that Ug 1 X 5. Vg, and Uy, 3y, VZ are the skinny SVD of X7+ and Y™, respectively. From Lemma 3,
we can further obtain

i (T, = Ugna U )€ = XYV Vi, [+ [Uga Uk (€7 = XPYM)2 =0, (39)
So, the following two equations hold:
[Ty = Ui U (G = XY™ Vi Vi [ =0 (40)
and
Jm [Ug, Uk (€7 = X797 =0 @)
We can further establish the following equations:
lim Ug,.U,,,(C"—X"Y") =0. (42)

n—-+oo

Since Y™ is bounded, Vg, V;n is bounded. Thus, we can establish the following equation:

HEIEOOUXHH Uy, n(C" = X"Y") V3, VG, = 0. (43)
So we can obtain
0= lim (Ln, — UgniiUg,)(C" = XY™V, VL, = nEToo(én - X"Y")\Vg, V. (44)

Since (Y")* = Vg, |25 (V,)*, (Xmtlys = (Xnt1)* %n+1U%, ,, and Y™, X"t are bounded, we have

0= lim (X"")'Ug. U

n—-+oo Xntt

(C"—X"Y") = lim (X"tH)*(C" — X"Y™") (45)

n—-+oo



and
_ : An _ ynyn R * '\n*: . AN YNy N (yn)*
0= HEIEOO(C X"Y")Vs, VY"(Y ) ngrfoo(C XY™ (Y™ . (46)
Since the sequence {( :k , }7’“7C’“ )} generated by our algorithm is bounded, there is a subsequence {(X*i, Y% ,C*7)} that
converges to a point (X,,Y,,C,). Therefore, the following two equations hold:
(C.— X.Y,)(Ys)" =0, (47)

On the other hand, we update chl = xkx yk +Po(M—-X kx y’“ ) at each iteration. Thus, C, always satisfies the following
two equations.

Poe(Cy — X, xY,) =0,
Po(C — M) =0.
And we can always find Q, that meets the following equations.
PSZ(C**X**y*)‘FQ*:O- (50)
So (X,,Y;,C,) is a KKT point of problem (13) in the paper. O

(49)



