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Abstract

Recently, lots of dictionary learning methods have been proposed and successfully applied. However,

many of them assume that the noise in data is drawn from Gaussian or Laplacian distribution and

therefore they typically adopt the `2 or `1 norm to characterize these two kinds of noise respectively.

Since this assumption is inconsistent with the real cases, the performance of these methods is limited. In

this paper, we propose a novel dictionary learning with structured noise (DLSN) method for handling

noisy data. We decompose the original data into three parts: clean data, structured noise, and

Gaussian noise, and then characterize them separately. We utilize the low-rank technique to preserve

the inherent subspace structure of clean data. Instead of only using the predefined distribution to fit the

real distribution of noise, we learn an adaptive dictionary to characterize structured noise and employ

the `2 norm to depict Gaussian noise. Such a mechanism can characterize noise more precisely. We also

prove that our proposed optimization method can converge to a critical point and the convergence rate

is at least sublinear. Experimental results on the data clustering task demonstrate the effectiveness

and robustness of our method.

Keywords: Dictionary learning, Structured noise, Low rank representation, Sparse representation

1. Introduction

Dictionary learning has been extensively studied [1, 2, 3, 4] due to its crucial role in sparse represen-

tation and low-rank modelling. Instead of using wavelets predefined by artificial rules, recent dictionary

learning methods are data-adaptive and aim at learning a series of basic atoms from a data set to lin-

early approximate a given datum. Mathematically, given a data matrix Y = [Y(1), · · · , Y(m)] ∈ Rd×m

where d and m respectively denote the feature dimension and the sample/signal number, dictionary

learning methods try to learn a dictionary D ∈ Rd×k so that samples Y can be approximately linearly
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Figure 1: Illustration of the proposed DLSN model. Data are decomposed into clean data, structured noise and Gaussian

noise. Then, each of the three parts is characterized separately, i.e., learning a dictionary and an adaptive dictionary

for clean data and structured noise respectively, and employing `2 to depict Gaussian noise. For better viewing, the

negative entries in the images are replaced with their absolute values in displaying.

represented as Y ≈ DA, where each column D(j) in D denotes a dictionary atom, and each column

A(i) in A ∈ Rk×m is the representation coefficient vector of the i-th sample Y(i). Such a mecha-

nism can characterize the inherent correlations among data, since under the same dictionary, similar

samples would have similar representation coefficients and those dissimilar samples would have very

different representation coefficients. Dictionary learning has now become an efficient feature learning

method and achieved state-of-the-art performance in many practical applications. KSVD [1] constructs

a dictionary by minimizing the reconstruction error of original samples and achieves impressive per-

formance in image recovery application. The tree-structured dictionary learning method [2] exploits

possible semantic relationships between dictionary atoms to learn structured dictionaries embedded in

a hierarchy and produces state-of-the-art denoising performance. Later Yang et al. [5] further apply

tree-structured dictionary learning method into mobile visual search [6, 7, 8, 9, 10]. Some litera-

ture [3, 4, 11, 12] adopts different reconstruction residual regularizations to depict noise more precisely

and good results are obtained in image denoising and data clustering tasks. In addition, dictionary

learning methods have also been used for other purposes such as signal reconstruction [13] and visual

saliency [14].

Due to the commonly existing noise in real data, the original signals/images cannot be exactly

linearly represented by the learnt dictionary. Thus in many dictionary learning methods, the original

data are decomposed into a linear combination of atoms from a dictionary and noise, i.e. Y = DA+E,

where E denotes the noise in data. To depict the noise E, some works [15, 1, 3, 16, 17, 18, 19] assume
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that the noise is of dense Gaussian distribution with small variation and can be depicted by the `2

norm, while [11, 20] argue that the noise in real data is drawn from Laplacian distribution and should be

characterized by the `1 norm. For better depicting noise, Chen et al. [11] further decompose the noise

into two parts, small dense Gaussian noise and Laplacian noise, and try to depict them separately.

However, Chen et al. [11] and Wu et al. [20] point out that the actual distribution of noise in real

applications, e.g. face recognition, is very complex and of neither Gaussian nor Laplacian distribution.

Thus, such a mechanism of characterizing the real noise with predefined distributions would limit the

performance of dictionary learning methods.

In this paper, we propose a novel dictionary learning with structured noise (DLSN) method which

aims at handling noise in data from another perspective. As shown in Fig. 1, we decompose data into

clean data, structured noise and Gaussian noise, and then characterize them separately. Since clean

visual data usually lie in several subspaces, and compared with sparse representation that encodes each

signal independently, the low-rank technique can preserve the global inherent structure of data [21,

22, 23]. In this paper, we also utilize the low-rank technique to characterize clean data. As for noise,

unlike the previous methods that totally use predefined distributions, e.g. Gaussian and Laplacian

distributions, to fit the real distribution of noise, we propose an adaptive method to characterize noise.

We divide noise into two parts, Gaussian noise and structured noise. Compared with Gaussian noise,

the remaining noise in data usually contains semantic meanings, such as the different illuminations

and the glasses on the faces shown in Fig. 1. So we refer to this kind of noise as structured noise.

We learn a set of basic atoms for structured noise, and typically, a datum consists of some different

structured noise. Therefore, we can represent the structured noise in a datum with a combination of

a few atoms from a structured noise dictionary. We also adopt the `2 norm to characterize Gaussian

noise. In summary, our main contributions in this paper include:

1) We propose a novel low-rank based dictionary learning method to handle noisy data. Unlike

sparse representation that encodes each signal dependently, the low-rank technique can capture

the global inherent structure of data and improve the quality of the learnt dictionary.

2) Instead of solely using Gaussian or Laplacian distribution to characterize the real noise, we

learn an adaptive dictionary for structured noise and adopt Gaussian distribution to depict the

remaining Gaussian noise.

Extensive experimental results demonstrate the advantages of our method.
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Table 1: Summary of notations frequently used in this paper.

Notation Meaning

capital letter A matrix.

MT Transpose of matrix M .

Mij The (i, j)-th entry of matrix M .

M(i) The i-th column of matrix M .

xi The i-th entry of vector x.

|| · ||∗ Nuclear norm, sum of the singular values.

|| · ||0 Number of nonzero entries.

|| · ||1 ||M ||1 =
∑
i,j |Mij |.

|| · ||F Frobenious norm, ||M ||F =
√∑

i,jM
2
ij .

|| · ||2
||x||2 =

√∑
i x

2
i if x is a vector; ||X||2 is the

spectral norm if X is a matrix.

2. Related Work

In this section, we review the existing dictionary learning methods. Based on the noise assumption,

we can roughly divide the dictionary learning methods into three kinds: Gaussian noise based methods,

Laplacian noise based methods, and mixed (Gaussian and Laplacian) noise based methods, which will

be reviewed sequentially. For brevity, we summarize some main notations in Table 1.

Gaussian noise based methods [15, 1, 3, 16, 17, 18, 19] assume that noise is drawn from Gaussian

distribution and use the `2 norm (square loss function) to depict the noise E = Y − D. A typical

model is

min
D,A

‖Y −DA‖2F , s.t. ‖D(i)‖22 ≤ 1, ∀i ∈ {1, 2, · · · , k},

‖A(j)‖0 ≤ T, ∀j ∈ {1, 2, · · · ,m},
(1)

where ‖A(j)‖0 ≤ T means for the j-th sample, its representation coefficients have fewer than T nonzero

entries. Among this kind of methods, MOD [15] and KSVD [1] are classic ones because of their

simplicity and effectiveness. Note that the two methods solve the same dictionary learning model (1)

but differ in the optimization. In order to make model (1) more easily solvable, Mairal et al. [3]

approximate the `0 norm by the `1 norm and consider the following model:

min
D,A
‖Y −DA‖2F + α‖A‖1,

s.t. ‖D(i)‖22 ≤ 1, ∀i ∈ {1, 2, · · · , k}.
(2)
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Subsequently, various variants [16, 17, 18, 19] of model (1) and (2) are successfully developed for

specific tasks by incorporating different discriminative terms into the objective function in (1) or (2).

For instance, to learn a discriminative dictionary for classification tasks, Zhang et al. [24] utilize the

label information of training samples and incorporate a classification error term into model (2). But

recent works [25, 4, 11] point out that the assumption of Gaussian noise may not be accurate, especially

when there are large corruptions and outliers. Besides, in image denoising applications, Gaussian noise

based methods may lead to over-smoothness of the images, causing loss of the detail [26].

To overcome the above drawbacks, Laplacian noise based methods [27, 4, 12] are developed. These

methods argue that the large corruptions and outliers are approximately drawn from Laplacian distri-

bution and hence can be depicted by the `1 norm, i.e. absolute error loss function. The model can be

formulated as

min
D,A
‖Y −DA‖1 + α‖A‖1,

s.t. ‖D(i)‖22 ≤ 1, ∀i ∈ {1, 2, · · · , k}.
(3)

Since input data are non-negative values in many real world problems (such as images, text vector,

etc.), Pan et al. [12] further add non-negative constraints on the dictionary D and the representation

coefficients A in problem (3). Though Laplacian noise based methods have achieved state-of-the-art

clustering and denoising performance, the assumption of Laplacian noise does not hold in practice

either [11, 20]. Furthermore, since the `1 norm is not smooth, most approaches [27, 12] typically ap-

proximate the `1 norm with approximative methods, such as the iteratively reweighted norm technique,

and thus are not very effective for random-valued impulse noise removal [4].

For depicting noise more accurately, Chen et al. [11] propose a mixed noise based method. They

assume that noise is the linear combination of Gaussian and Laplacian noise, and try to depict these

two kinds of noise separately. Accordingly, their model is formulated as

min
D,A,B

‖Y −DA−B‖2F + α‖A‖1 + β‖B‖1,

s.t. ‖D(i)‖22 ≤ 1, ∀i ∈ {1, 2, · · · , k},
(4)

where E = Y − DA − B and B respectively denote Gaussian and Laplacian noise, and α and β are

two positive constants. However, noise in real data is sophisticated and it is neither Gaussian nor

Laplacian [11, 20]. Thus, using predefined distributions cannot depict noise accurately and may limit

the performance of these dictionary learning methods.
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3. Dictionary Learning with Structured Noise

In this section, we first present our dictionary learning with structured noise (DLSN) method, then

introduce a novel optimization method, and finally analyze the convergence of the proposed algorithm.

The dictionaries are denoted as Dc ∈ Rd×kc and Ds ∈ Rd×ks for clean data Yc and structured noise

Ys, respectively.

3.1. Formulation of DLSN

As aforementioned, many dictionary learning methods assume that the noise in data is drawn from

Gaussian or Laplacian distribution or their mixture. However, in real cases, noise is very sophisti-

cated and cannot be handled by predefined distributions. We try to solve this problem from another

perspective, rather than fitting the distribution of noise. As shown in Fig. 1, we decompose the orig-

inal data Y to clean data Yc, structured noise Ys, and Gaussian noise Yg. We learn a dictionary Dc

for clean data and an adaptive dictionary Ds for structured noise. Some literature [21, 28, 22, 23]

points out that the clean visual data, such as texture, face and motion, can be well characterized by

subspaces and the samples in the same class should locate in the same low-dimensional subspace. As

the dimension of the subspace corresponds to the rank of the representation matrix, these methods

enforce a low-rank constraint on the representation matrix to characterize the subspace structures and

enhance the correlation among the representation coefficient vectors at the same time. Inspired by

these works, we also adopt the low-rank technique to characterize the inherent structure of clean data.

On the other hand, the noise in the data except Gaussian noise is usually structured and contains

semantic meanings, e.g., different illuminations, scarfs and glasses on the faces shown in Fig. 1 and

2. Typically, a datum contains several kinds of structured noise. Thus, we try to learn an adaptive

dictionary and use a few atoms to linearly represent the structured noise in a datum. As for Gaussian

noise Yg = Y − Yc − Ys, we employ the `2 norm to characterize it. Our model can be formulated as

follows:

min
Ac,As,

Dc,Ds

1

2
‖Y −DcAc −DsAs‖2F + αrank(Ac) + β‖As‖0,

s.t. Dc ∈ Ω, Ds ∈ Θ,

(5)

where Ω = {Dc : ‖Dc(i)‖22 ≤ 1, i = 1, · · · , kc} and Θ = {Ds : ‖Ds(j)‖22 ≤ 1, j = 1, · · · , ks}.

Ac ∈ Rkc×m and As ∈ Rks×m are two coefficient matrices for clean data Yc and structured noise

Ys, respectively. However, directly solving problem (5) is difficult, since minimization of the rank(·)

function and the `0 pseudonorm is NP hard. We use their convex surrogates, the nuclear norm and
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the `1 norm, to approximate them, respectively. Then, our model can be rewritten as

min
Ac,As,

Dc,Ds

1

2
‖Y −DcAc −DsAs‖2F + α‖Ac‖∗ + β‖As‖1,

s.t. Dc ∈ Ω, Ds ∈ Θ.

(6)

3.2. Optimization of DLSN

The optimization problem (6) is not jointly convex with respect to (Dc, Ds, Ac, As). Empirically, we

can develop an iterative minimization method to update each variable alternately. In this paper, based

on the proximal alternating linearized minimization (PALM) method [29], we propose an alternating

proximal method to solve this problem. We first give a brief introduction to the optimization sketch

of the PALM method [29].

3.2.1. Sketch of PALM

Consider the following optimization problem:

min
x1,··· ,xp

p∑
i=1

fi(xi) +H(x1, · · · , xp), (7)

where H is assumed to be C1 and each fi (i = 1, · · · , p) is a proper and lower semi-continuous function.

We denote by ∇iH the gradient of H with respect to variable xi (i = 1, · · · , p), i.e. the gradient of H

with respect to variable xi when all xj (j 6= i) are fixed, and Li (i = 1, · · · , p) the Lipschitz constant

of ∇iH. Then, using the PALM method to alternately update variables xi (i = 1, · · · , p) can be

formulated as follows:

xk+1
i ∈ proxfi

eki
(xki −

1

eki
∇iH(xk+1

1 , · · · , xk+1
i−1 , x

k
i , · · · , xkp)), (8)

where eki = max(γiLi, γ̂) (γi > 1) and γ̂ can guarantee the proximal steps to be well defined. prox(·)

is a proximal operator, which is defined as

proxfµ(x) = argmin
z

f(z) +
µ

2
‖z − x‖22. (9)

3.2.2. Solving DLSN via PALM

We can follow the sketch of PALM to solve problem (6). We update the variables Ac, As, Dc,

and Ds alternately at each iteration by minimizing their corresponding proximal problem with other
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variables fixed. Firstly, we define

H(Ac, As, Dc, Ds) = 1
2‖Y −DcAc −DsAs‖2F ,

f1(Ac) = α‖Ac‖∗,

f2(As) = β‖As‖1,

f3(Dc) = IΩ(Dc),

f4(Ds) = IΘ(Ds),

(10)

where IΠ(D) is the indicator function. That is, if D ∈ Π, IΠ(D) = 0; otherwise, IΠ(D) = +∞.

We need to solve the following problems to update these variables in turn.



Ak+1
c ∈ proxf1

ek1
(Akc − 1

ek1
∇iH(Akc , A

k
s , D

k
c , D

k
s )),

Ak+1
s ∈ proxf2

ek2
(Aks − 1

ek2
∇iH(Ak+1

c , Aks , D
k
c , D

k
s )),

Dk+1
c ∈ proxf3

ek3
(Dk

c − 1
ek3
∇iH(Ak+1

c , Ak+1
s , Dk

c , D
k
s )),

Dk+1
s ∈ proxf4

ek4
(Dk

s − 1
ek4
∇iH(Ak+1

c , Ak+1
s , Dk+1

c , Dk
s )).

(11)

Actually, the four optimization problems in (11) have closed form solutions, which are given as

Ak+1
c = Ψα/ek1

(
Akc −∇iH(Akc , A

k
s , D

k
c , D

k
s )/ek1

)
, (12)

Ak+1
s = Φβ/ek2

(
Aks −∇iH(Ak+1

c , Aks , D
k
c , D

k
s )/ek2

)
, (13)

Dk+1
c = ΓΩ

(
Dk
c −∇iH(Ak+1

c , Ak+1
s , Dk

c , D
k
s )/ek3

)
, (14)

and

Dk+1
s = ΓΘ

(
Dk
s −∇iH(Ak+1

c , Ak+1
s , Dk+1

c , Dk
s )/ek4

)
, (15)

where Ψµ(X) is the singular value thresholding (SVT) operator [30] and Φµ(X) is the soft threshold-

ing [31]. ΓΠ(X) is an operator that projects the matrix X onto the set Π. In this paper, we have the

Lipschitz constants Lk1 = ‖Dk
c ‖22, Lk2 = ‖Dk

s‖22, Lk3 = ‖Ak+1
c ‖22, and Lk4 = ‖Ak+1

s ‖22 at each iteration.

The detailed optimization procedure of DLSN is presented in Algorithm 1.

3.3. Analysis of Algorithm 1

In this section, we first give convergence analysis of our Algorithm 1 and then analyze the compu-

tational cost at each iteration and its memory cost.

8



Algorithm 1 Solving DLSN via PALM

Input: The data matrix Y , the parameters α > 0 and β > 0, and ε = 1e− 6.

Initialize: D0
c , D

0
s , A

0
c , and A0

c .

While ‖ Dk+1
c −Dk

c ‖∞> ε or ‖ Dk+1
s −Dk

s ‖∞> ε do

1. Fix Aks , D
k
c , and Dk

s to update Ak+1
c by (12).

2. Fix Ak+1
c , Dk

c , and Dk
s to update Ak+1

s by (13).

3. Fix Ak+1
c , Ak+1

s , and Dk
s to update Dk+1

c by (14).

4. Fix Ak+1
c , Ak+1

s , and Dk+1
c to update Dk+1

s by (15).

5. k ← k + 1.

end while

Output: Dk
c , Dk

s , Akc , and Akc .

3.3.1. Convergence Analysis

We first prove that the sequence generated by our proposed optimization method can be bounded

and converge to a critical point, as stated in Theorem 1.

Theorem 1. Assume that the function φ(Ac, As, Dc, Ds) = H(Ac, As, Dc, Ds) + f1(Ac) + f2(As) +

f3(Dc) + f4(Ds) is our objective function. The sequence {(Akc , Aks , Dk
c , D

k
s )} generated by Algorithm 1

satisfies the following properties:

1) φ(Akc , A
k
s , D

k
c , D

k
s ) is monotonically decreasing.

2) The sequence {(Akc , Aks , Dk
c , D

k
s )} is bounded.

3) The sequence {(Akc , Aks , Dk
c , D

k
s )} is a Cauchy sequence and converges to a critical point of the

optimization problem (6).

Then, we can prove that the convergence rate of Algorithm 1 is at least sublinear.

Theorem 2. The sequence {(Akc , Aks , Dk
c , D

k
s )} generated by Algorithm 1 converges to a critical point {(A∗c ,

A∗s, D∗c , D∗s)} of problem (6) in an at least sublinear convergence rate, i.e., there exists ω > 0, such

that

‖(Akc , Aks , Dk
c , D

k
s )− (A∗c , A

∗
s, D

∗
c , D

∗
s)‖F ≤ ωk−

1−θ
2θ−1 , (16)

where θ ∈ ( 1
2 , 1).

The proofs of Theorems 1 and 2 can be found in Appendix. So by Theorems 1 and 2, we can know

that though problem (6) is non-convex, the proposed algorithm can guarantee that the generated

sequence can converge to a critical point with at least a sublinear convergence speed.
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3.3.2. Computational and Memory Cost

The computational cost in each iteration and the total memory cost of Algorithm 1 are respectively

O
(
(kc + ks)md+ k2

cm
)

and O
(
d(m+ kc + ks) +m(kc + ks) + k2

c

)
. We analyze each step in Algo-

rithm 1. For memory cost, we first need to store Y ∈ Rd×m, Dc ∈ Rd×kc , Ds ∈ Rd×ks , Ac ∈ Rkc×m

and As ∈ Rks×m, which requires O (d(m+ kc + ks) +m(kc + ks)) memory. In Step 1 (updating Ak+1
c

by (12)), we need to compute T kc = Akc − ∇iH(Akc , A
k
s , D

k
c , D

k
s )/ek1 first with computational cost

O ((kc + ks)dm) and then compute the skinny singular value decomposition (SVD) of T kc , which re-

quires at most O
(
k2
cm
)

computational cost. The memory cost of Step 1 is O (dm+ kc(kc +m)). Step 2

updates Ak+1
s by the soft thresholding with the computational and memory cost O ((kc + ks)dm) and

O(dm), respectively. Step 3 uses the project gradient method to update Dk+1
c with O((kc + ks)dm)

computational cost and O(dm) memory. Similar to Step 3, the computational and memory cost of

Step 4 are also O ((kc + ks)dm) and O(dm), respectively. Therefore, the total computational cost in

each iteration is O
(
(kc + ks)md+ k2

cm
)
. Since Steps 1∼4 update variables sequentially and thus can

share memory, the total memory cost is O
(
d(m+ kc + ks) +m(kc + ks) + k2

c

)
.

The computational cost of our method is comparable to or lower than those of some other dictionary

methods, such as OMD [15], KSVD [1], [4], [11], [12], [26]. There are three reasons. (1) Typically,

most dictionary learning methods need to compute the residual Y −DA where Y ∈ Rd×m, D ∈ Rd×k

and A ∈ Rk×m respectively denote the data matrix, a dictionary and a coefficient matrix, which

requires the computational cost O(kdm), and they may also require other computational resources.

For instance, KSVD [1] needs to use SVD to update D and A with cost O(dm2) in each iteration.

(2) In most cases, the dictionary atom number k is usually less than the sample number m and the

feature dimension d, which leads to k2
c ≤ dm. (3) For fairness, in our experiments the total dictionary

atom number for all compared methods is the same, i.e. kc + ks = k. So the computational cost

of our method in each iteration is O(kmd) and thus is comparable to or lower than those of some

other dictionary methods, including [15], [1], [4], [11], [12], [26]. As for memory cost, most dictionary

methods need at least O(d(m+ k) + km) memory, since they need to store Y ∈ Rd×m, D ∈ Rd×k and

A ∈ Rk×m and they may also need other extra memory. Because of reasons (2) and (3), the memory

cost of our method is also O(d(m+ k) + km) and hence is comparable to or lower than those of some

other dictionary methods, e.g. [15], [1], [4], [11], [12], [26].
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4. Experiments

In this section, we compare our proposed dictionary learning method with other state-of-the-art

methods. We will first introduce the initialization strategy of our approach and then experiment on the

well-known task: data clustering. Extensive experimental results demonstrate the effectiveness and

robustness of our method. Our code will be released online upon acceptance of this paper.

4.1. Experimental Setting

Initialization and Parameter Setting. As described in Algorithm 1, we need to initialize Dc, Ds, Ac,

and As first and adopt the following initialization way. We first use Robust PCA [32] to separate

the original data into clean data and sparse noise roughly. Then, we apply KSVD [1] to learn two

dictionaries: one for clean data and the other for noise. At the same time, KSVD also provides the

coefficients Ac and As. The iteration number of initializing the dictionary by KSVD is set to only 8,

since each iteration in KSVD is time-consuming and our method only needs a rough initialization. In

our method, the numbers of atoms for clean data and structured noise are set to 3 and 2 for each class

in all experiments, respectively. We empirically set the ranges of parameters α and β as α ∈ [0.005, 5]

and β ∈ [0.01, 10], respectively. We directly use the coefficients Ac for clean data for clustering.

Datesets Description. We evaluate our method on three types of databases: 1) Binary Alphadigits1,

for the handwritten alphabet clustering task; 2) AT&T2, YaleB [33], AR [34], and PIE [35], for face

clustering; 3) Movement3 [36], for hand movement recognition. As shown in Fig. 2, the difficulties of

these four testing face databases are not the same. Each class in the Movement dataset corresponds

to a hand movement type in LIBRAS3. Table 2 summarizes the experimental settings and the char-

acteristics of all the six datasets. Note that when we conduct experiments on the Binary Alphadigits

dataset, we only cluster the 26 alphabets and ignore digits, and when we test the compared methods

on AR, we use all images in the first session.

Compared Methods. We compare our method with six state-of-the-art dictionary learning methods:

KSVD [1], ODLSC [3], DLINR [4], RDLESD [11], `1-KSVD [26], and RNNDL [12]. KSVD and ODLSC

assume that noise is drawn from Gaussian distribution and they adopt the `2 norm to characterize it.

DLINR, RNNDL, and `1-KSVD employ the `1 norm to depict noise, since they suppose that noise is

1http://www.cs.toronto.edu/roweis/data.html.
2http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
3https://archive.ics.uci.edu/ml/datasets/Libras+Movement.
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(a) (b)

(c) (d)

Figure 2: Some examples in the four face datasets. The images in (a), (b), (c), and (d) are from AT&T, YaleB, AR, and

PIE, respectively.

Table 2: Descriptions of the six testing datasets. (“def.”, “pos.”, “ill.”, “exp.”, and “occ.” are short for “deformation”,

“pose”, “illumination”, “expression”, and “occlusion”, respectively.)

Dataset Number Size #Class Difficulty

Alphadigits 390 28× 23 26 def.

AT&T 400 28× 23 40 pos.

YaleB 380 24× 21 38 ill.

AR 1300 33× 24 100 ill., exp., and occ.

PIE 680 24× 24 68 ill., exp., and pos.

Movement 360 90× 1 15 def. and pos.

Laplacian. RDLESD divides noise into Gaussian noise and Laplacian noise and utilizes the `2 and `1

norms to characterize them respectively. For fairness, the numbers of atoms for each class in KSVD,

ODLSC, DLINR, `1-KSVD, and RDLESD are all set to 5. Therefore their dictionary sizes are equal

to that of our method. All methods use kmeans for clustering.

Evaluation Metrics. As in [37, 12], we employ the widely used accuracy (ACC), normalized mutual

information (NMI), and purity (PUR) as our evaluation metrics. We also compare the average dic-

tionary learning time of our method with other compared methods. The average dictionary learning

time is computed as an average over all the samples. Note that average dictionary learning time of our

method includes the initialization time. The experimental clustering results and the average dictionary

learning time are summarized in Table 3 and Fig. 3, respectively.
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Table 3: Clustering results (ACC, NMI, and PUR) on the six testing datasets. (“GNM”, “LNM”, “MNM”, and “SNM”

are respectively short for “Gaussian noise based method”, “Laplacian noise based method”, “Mixed noise based method”,

and “Structured noise based method”.)

Dataset Metrics
GNM LNM MNM SNM

KSVD ODLSC DLINR RNNDL `1-KSVD RDLESD DLSN (ours)

Alphadigits

ACC 0.3379 0.3484 0.3076 0.3000 0.3282 0.3556 0.5029

NMI 0.4483 0.4513 0.4133 0.4215 0.4577 0.4784 0.6278

PUR 0.3484 0.3574 0.3435 0.3256 0.3615 0.3612 0.5178

AT&T

ACC 0.3825 0.3675 0.3700 0.5075 0.4375 0.5700 0.8050

NMI 0.5423 0.4928 0.4833 0.7174 0.5381 0.6829 0.8884

PUR 0.4515 0.4375 0.4400 0.5450 0.4108 0.5375 0.8250

YaleB

ACC 0.1805 0.1894 0.1868 0.1789 0.1626 0.1914 0.2504

NMI 0.3021 0.3243 0.2953 0.3772 0.2791 0.3857 0.4318

PUR 0.2026 0.2189 0.2157 0.1895 0.1736 0.2173 0.2604

AR

ACC 0.1454 0.1492 0.1476 0.1000 0.1271 0.1531 0.1908

NMI 0.3547 0.3958 0.3568 0.3241 0.3271 0.3911 0.5048

PUR 0.1515 0.1584 0.1584 0.1162 0.1392 0.1601 0.2023

PIE

ACC 0.2288 0.2326 0.2138 0.2176 0.2271 0.2382 0.2676

NMI 0.4714 0.3964 0.4136 0.5189 0.5031 0.4976 0.5662

PUR 0.2538 0.2579 0.2676 0.2368 0.2312 0.2691 0.2956

Movement

ACC 0.3083 0.3130 0.2944 0.2444 0.2561 0.3316 0.4138

NMI 0.3545 0.3684 0.3248 0.2618 0.2954 0.3923 0.4555

PUR 0.3444 0.3527 0.3277 0.2694 0.2544 0.3494 0.4500

4.2. Clustering Results

As Table 3 shows, our method achieves much better clustering results than all the competitors

across all datasets on the three evaluation metrics. As shown in Fig. 1, our method decomposes the

original data into clean data, structured noise, and Gaussian noise, and then characterizes them sep-

arately. Such a mechanism can depict data more precisely and obtain better clustering performance.

Unlike KSVD, ODLSC, DLINR, RNNDL, and `1-KSVD, which solely utilize Gaussian or Laplacian

distribution to fit noise, RDLESD fits the real noise with a mixture of Gaussian and Laplacian dis-

tribution and performs better than these five methods in most cases. This also demonstrates that

characterizing noise more precisely can lead to better results. Fig. 3 shows that our method is the

fastest. Our method is about two times faster than the second fastest method, ODLSC, and is at least
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Figure 3: Average dictionary learning time (seconds) on the six testing datasets.
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Figure 4: Effects of parameters α and β on our method on the AT&T dataset.

five times faster than RDLESD on the six testing databases.

We also test the effects of parameter selection on our method. As shown in Fig. 4, though the

values of α and β vary within two large ranges respectively, the results of our method on the three

metrics (ACC, NMI, and PUR) are relatively stable, which verifies the robustness of our method to

parameter selection. To sum up, our method not only achieves better clustering performance but also

has good efficiency and robustness to parameter selection.

We conduct experiments to verify that our two techniques, i.e. using low-rank technique to charac-

terize the clean data and our decomposition technique of handling noise, can both benefit the clustering

results. We remove the dictionary of structured noise in our model, and use the `2 norm to depict the

noise:

min
D,A

1

2
‖Y −DA‖2F + α‖A‖∗, s.t. D ∈ Ω. (17)
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Table 4: Comparison of clustering results (ACC, NMI, and PUR) of low-rank based methods on the three testing

datasets.

Alphadigits AT&T YaleB

Method ACC NMI PUR ACC NMI PUR ACC NMI PUR

Robust PCA 0.3634 0.4737 0.3918 0.4712 0.6519 0.5327 0.1953 0.3656 0.1942

LRDL 0.4013 0.5314 0.4451 0.5175 0.7121 0.5859 0.2132 0.3853 0.2102

DLSN (ours) 0.5029 0.6278 0.5178 0.8050 0.8884 0.8250 0.2504 0.4318 0.2604

Figure 5: Corrupted examples of AR.

We call this low-rank based dictionary learning method as LRDL and also adopt PALM as its solver.

For fairness, we also use KSVD to initialize D in LRDL. Since our method uses Robust PCA which is

also a low-rank based method to initialize our solution, we also compare our method with it and simply

use the clean data extracted by Robust PCA for clustering. We report the experimental results in

Table 4. It can be observed that the low-rank technique can benefit the results, since the comparison

between Table 3 and 4 shows that these low-rank based methods perform better than those sparse based

ones in most cases. Thus, the low-rank technique is conducive to the improvements of the clustering

results. By comparing the clustering results of LRDL and our DLSN in Table 4, we can conclude that

our decomposition technique of handling noise can benefit much our method, since DLSN and LRDL

only differ in their techniques of handling noise: DLSN decomposes the noise into structured noise and

gaussian noise and separately characterizes them, while DLSN only considers gaussian noise.

4.3. Noise Experiments

Finally, we conduct noise experiments to further validate the advantages of our method. We

randomly select five classes from the AR dataset [34], and then choose fourteen neutral images plus

three with sunglasses for each class. Finally, we add two types of noise to the images: 1) we add

Gaussian white noise with SNR 15dB to each image; 2) each image is added three occlusion blocks

of size 5 × 5 and the locations of occlusions are randomly generated. Fig. 5 shows some corrupted

images. We also compare our method with other state-of-the-art methods and report ACC, NMI,

15



(h)(c)(b)(a) (g)(d) (e) (f)

Figure 6: Examples of restoration. (a) is the original corrupted image. (b), (c), (e), (f), (g), and (h) are restorations

by KSVD [1], ODLSC [3], DLINR [4], RNNDL [12], `1-KSVD [26], RDLESD [11], and our DLSN, respectively. Note

that KSVD , ODLSC, DLINR , RNNDL, and `1-KSVD only divide the original data into two parts, clean data and

noise. RDLESD and our DLSN further divide the noise into two parts, Laplacian noise and Gaussian noise in RDLESD,

structured noise and Gaussian noise in our method. For better viewing, we replace the negative entries in the images

with their absolute values when we display the images.

Table 5: Clustering results (ACC, NMI, and PUR) on corrupted AR. (“GNM”, “LNM”, “MNM”, and “SNM” are

respectively short for “Gaussian noise based method”, “Laplacian noise based method”, “Mixed noise based method”,

and “Structured noise based method”.)

Dataset Metrics
GNM LNM MNM SNM

KSVD ODLSC DLINR RNNDL `1-KSVD RDLESD DLSN (ours)

Corrupted AR

ACC 0.5352 0.5588 0.5721 0.5364 0.5852 0.6358 0.7176

NMI 0.5687 0.5141 0.5029 0.5548 0.5832 0.6394 0.7489

PUR 0.5529 0.5941 0.5823 0.5765 0.5570 0.6176 0.7529

and PUR in Table 5. It is easy to observe that our method achieves much better performance even

though the noise is very complex. Fig. 6 shows the restorations. KSVD [1], ODLSC [3], DLINR [4],

RNNDL [12], `1-KSVD [26], and RDLESD [11] all fail to deal with the occlusion well. No one removes

the glass on the face. KSVD, ODLSC, DLINR, RNNDL cannot handle the block at the upper-right

corner either, since the pixels near this block are hairs and also black, which increases the difficulty

of processing. In contrast, our method characterizes the noise more precisely. It removes not only the

glass but also the three blocks. Unlike those methods that use predefined distributions (Gaussian and

Laplacian distributions) to fit the real distribution of noise, our method learns an adaptive dictionary

for structured noise and adopts Gaussian distribution to characterize the remaining Gaussian noise.

Thus, our method is adaptable to more complex noise and achieves much better performance.

5. Conclusion

We present a novel dictionary learning with structured noise (DLSN) method, which provides a new

way to handle noisy data. By decomposing the original data into three parts: clean data, structured

noise and Gaussian noise, and then characterizing them separately, our method can characterize data
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more precisely. Besides, we can prove that our proposed optimization method can converge to a critical

point and the convergence rate is at least sublinear. Experimental results demonstrate that our method

not only obtains better performance but also runs faster than some state-of-the-art dictionary learning

methods on the data clustering task.
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Appendix

Before we prove Theorems 1 and 2, we first prove two lemmas.

Lemma 1. φ(Akc , A
k
s , D

k
c , D

k
s ) is monotonically decreasing and the sequence {(Akc , Aks , Dk

c , D
k
s )} gen-

erated by Algorithm 1 is bounded.

Proof. From Lemma 3 in [29], the monotonically nonincreasing property holds for the PALM method,

when the step size ei = max(γiLi, γ̂) > Li (γi > 1) for all i at each iteration. We have

αε = φ(A1
c , A

1
s, D

1
c , D

1
s) ≥ · · · ≥ φ(Akc , A

k
s , D

k
c , D

k
s ), (18)

where ε is a constant. Thus, we can obtain that 1
2‖Y −D

k
cA

k
c −Dk

sA
k
s‖2F + α‖Akc‖∗ + β‖Aks‖1 ≤ αε.

So, ‖Akc‖∗ ≤ ε holds at all iterations, i.e., {‖Akc‖∗} can be bounded. Since all norms are equivalent

when they are on a finite dimensional space, the sequence {‖Akc‖F } is also bounded. Therefore, {Akc}

is bounded. In the same way, we can prove that {Aks} is also bounded. As Dc ∈ Ω and Ds ∈ Θ, {Dk
c }

and {Dk
s} are bounded.

Lemma 2. φ(Ac, As, Dc, Ds) is a semi-algebraic function.

Before we prove Lemma 2. We first introduce the definition of semi-algebraic function, which is

stated as follows:

Definition 1. [29] A subset S of Rd is called the semi-algebraic set if there exists a finite number of

real polynomial functions gij, hij : Rd → R, such that

S =
⋃
j

⋂
i

{u ∈ Rd : gij(u) = 0, hij(u) < 0}. (19)
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A function f(u) is called the semi-algebraic function if its graph {(u, t) ∈ Rd+1} is a semi-algebraic

set.

There is a broad class of functions in semi-algebraic sets and functions. There are two main results,

which will be used later. The composition of semi-algebraic functions and sup{g(u, v) : v ∈ C}, when g

is semi-algebraic and C is a semi-algebraic set, are all semi-algebraic functions [38]. These two results

can be proved by the Tarski-Seidenberg principle: the image of a semi-algebraic set A ⊂ Rd+1 by the

projection π : Rd+1 → Rd is semi-algebraic [38, 39, 29].

Now, we prove the objective function φ(Ac, As, Dc, Ds) = H(Ac, As, Dc, Ds) + f1(Ac) + f2(As)

+f3(Dc) + f4(Ds) is a semi-algebraic function.

Proof. We only need to prove that each function in φ(Ac, As, Dc, Ds) is a semi-algebraic function.

H(Ac, As, Dc, Ds) = 1
2‖Y −DcAc −DsAs‖2F is a semi-algebraic function, since it is a real polynomial

function.

f2(As) = β‖As‖1 is a semi-algebraic function, as the `p norm is semi-algebraic when p is rational (see

Example 2 in [29]).

By Definition 1, Ω = {Dc : ‖Dc(i)‖22 ≤ 1, i = 1, · · · , kc} =
⋂kc
i=1{Dc : ‖Dc(i)‖22 ≤ 1} is a semi-algebraic

set. Thus, Θ = {Ds : ‖Ds(j)‖22 ≤ 1, j = 1, · · · , ks} is also a semi-algebraic set. As f3(Dc) = IΩ(Dc)

and f4(Ds) = IΘ(Ds) are indicator functions of the two sets Ω and Θ, respectively, f3 and f4 are two

semi-algebraic functions.

To prove f1(Ac) is a semi-algebraic function, we first prove that the spectral norm σ1(Q) = max{λi(QTQ)}

is a semi-algebraic function. The spectral norm of Q ∈ Rm×n can be rewritten as:

σ1(Q) = sup{‖Qx‖2 : ‖x‖2 ≤ 1}. (20)

Since the `2 norm of a vector is a polynomial function and σ1(Q) is a sup type function which is a

semi-algebraic function [38], σ1(Q) is a semi-algebraic function. By Definition 1, {(Q, y) ∈ Rm×n+1 :

y − σ1(Q) = 0} is a semi-algebraic set. As all semi-algebraic sets are stable under finite unions,

{Q ∈ Rm×n : σ1(Q) ≤ 1} is a semi-algebraic set. Applying the Tarski-Seidenberg principle, {Q ∈

Rm×n : σ1(Q) ≤ 1} is a semi-algebraic set. The nuclear norm is dual to the spectral norm [40], which

can be formulated as:

‖A‖∗ = sup{Tr(QTA) : σ1(Q) ≤ 1}, (21)

where Tr(·) is the trace operator. Since Tr(QTA) is a polynomial function and {Q ∈ Rm×n : σ1(Q) ≤ 1}

is a semi-algebraic set, the nuclear norm is a semi-algebraic function. Thus f1(Ac) is a semi-algebraic

function.
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Theorem 1 is based on a proposition in [29], which can be stated as follows:

Proposition 1. [29] Suppose that F (x1, ..., xp) =
∑p
i=1 fi(xi) +H(x1, ..., xp) is the objective function.

The sequence {(xk1 , ..., xkp)} generated by PALM [29] is a Cauchy sequence, such that

∞∑
k=1

‖(xk+1
1 , ..., xk+1

p )− (xk1 , ..., x
k
p)‖ <∞,

and the sequence {(xk1 , ..., xkp)} converges to a critical point (x∗1, ..., x
∗
p) of F if F satisfies the following

properties:

(1) H(x1, ..., xp) is Lipschitz continuous;

(2) fi(xi) is a proper and lower semi-continuous function with inf fi >∞;

(3)F (x1, ..., xp) satisfies the Kurdyka-Lojasiewicz (KL) properties [41];

(4) The sequence {(xk1 , ..., xkp)} is bounded.

Now, we prove Theorem 1.

Proof. From Lemma 1, the properties (1) and (2) in Theorem 1 hold. To prove the property (3) in

Theorem 1, we only need to prove that φ(Ac, As, Dc, Ds) satisfies the four conditions in Proposition 1.

φ(Ac, As, Dc, Ds) meets the first two conditions obviously. Since all semi-algebraic functions satisfy the

Kurdyka-Lojasiewicz (KL) properties by Theorem 3 in [29] and φ(Ac, As, Dc, Ds) is a semi-algebraic

function by Lemma 2, φ(Ac, As, Dc, Ds) satisfies the Kurdyka-Lojasiewicz (KL) properties. From

Lemma 1, {(Akc , Aks , Dk
c , D

k
s )} is bounded. Thus, the sequence {(xk1 , ..., xkp)} is a Cauchy sequence and

it converges to a critical point, i.e., the property (3) in Theorem 1 holds.

Before we prove Theorem 2, we introduce a proposition [42, 29], which is described as follows:

Proposition 2. [42, 29] Assume that the objective function F (x1, ..., xp) satisfies the following con-

ditions:

(1) inf F > −∞;

(2) The restriction of F to its domain is a continuous function;

(3) F satisfies the Lojasiewicz property: for any limiting-critical point (x∗1, ..., x
∗
p), there exist C, ε > 0,

and θ ∈ [0, 1) such that

‖F (x1, ..., xp)− F (x∗1, ..., x
∗
p)‖θ ≤ C‖(x∗1, ..., x∗p)‖,

for ∀(x1, ..., xp) ∈ B((x∗1, ..., x
∗
p), ε), ∀(x∗1, ..., x∗p) ∈ crit F , where crit F denotes the critical point set of

F ;
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(4) The sequence {(xk1 , ..., xkp)} generated by PALM [29] is bounded.

Then the sequence {(xk1 , ..., xkp)} convergences in an at least sublinear rate. Generally, we meet the

worse case that θ ∈ ( 1
2 , 1), there exists ω > 0 such that

‖(xk1 , ..., xkp)− (x∗1, ..., x
∗
p)‖ ≤ ωk−

1−θ
2θ−1 .

Now, we prove Theorem 2.

Proof. We need to prove that φ(Ac, As, Dc, Ds) satisfies the four conditions in Proposition 2. φ(Ac, As,

Dc, Ds) satisfies the first two conditions obviously. Besides, φ(Ac, As, Dc, Ds) satisfies the Lojasiewicz

property, since it is a semi-algebraic function (see Example 1(b) in [42]). Incorporating with the

boundedness of the sequence {(Akc , Aks , Dk
c , Dk

s )} in Lemma 1, we can obtain that the sequence {(Akc ,

Aks , Dk
c , Dk

s )} converges to a critical point in an at least sublinear rate.
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