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1. Structure of This Document
This document gives details on the deduction of Algo-

rithm 1 and the proofs of Theorems 1 and 2 in the manuscript.
Sec. 2 gives some other notations and properties which will be
used in the proofs. Sec. 3 presents the details of Algorithm 1.
Sec. 4 provides the proofs of Theorem 1. In Sec. 5, we will
prove Theorem 2.

2. Notations and Preliminaries
Besides the notations introduced in the main text, we in-

troduce some additional necessary notations used in this docu-
ment. Then we introduce two important properties about DFT
on Tensors, which are used later.

2.1. Notations

The tensor spectral (or operator) norm of A is defined as
‖A‖ = ‖Ā‖. The operator norm of an operator on tensor is
defined as ‖L‖ = sup‖A‖F=1‖L(A)‖F . The inner product of
two tensors A and B in n1 × n2 × n3 is defined as 〈A,B〉 =∑n3

i=1〈A
(i),B(i)〉. The dual norm of tensor `2,1 norm is the

tensor `2,∞ norm defined as ‖A‖2,∞ = maxi ‖A(:, i, :)‖F .
Next, we define the commonly used operators in this doc-

ument. Let U ∗ S ∗ V∗ be the tensor SVD of L. Then,
the projection onto the row space V is given by PV(A) =
A ∗ V ∗ V∗. The projection to the union of the column
space U and the row space V is denoted by PT (A) =
PU (A) + PV(A) − PUPV(A), where PUPV(A) =
U ∗U∗∗A∗V ∗V∗. The orthogonal complement of PU , PV
and PT is denoted by PU⊥ = I − PU , PV⊥ = I − PV
and PT ⊥ = I −PT , respectively. Note that the variants of
above notations also denote the similar meanings.

Finally, we introduce standard tensor basis defined in Def-
inition 1, which is commonly used in the proofs.

Definition 1. (Standard tensor basis) [1] For an arbitrary
tensor A ∈ Rn1×n2×n3 , its column basis is e̊i of size n1 ×
1 × n3 with the (i, 1, 1)-th entry equaling to 1 and the rest
equaling to 0. Similarly, the row basis is e̊∗j of size 1×n2×n3

with the (1, j, 1)-th entry equaling to 1 and the rest equaling
to 0. The tube basis is ėk of size 1×1×n3 with the (1, 1, k)-th
entry equaling to 1 and the rest equaling to 0.

Based on the tensor basis, for brevity, we further define
eijk = e̊i ∗ ėk ∗ e̊∗j .

2.2. Properties of DFT on Tensors

Since the tensor nuclear norm is defined on the Fourier do-
main and in the proofs we will use some important proper-
ties of Discrete Fourier transformation (DFT), we introduce it
first. The Fourier transformation on v ∈ Rn is given as

v̄ = Fnv ∈ Cn,

where Fn is the DFT matrix defined

Fn =


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

...
...

...
. . .

...
1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)

 ∈ Cn×n,

where ω = e−
2πi
n is a primitive n-th root of unity in which

i =
√
−1. Note that Fn/

√
n is an orthogonal matrix, i.e.,

F ∗nFn = FnF
∗
n = nIn. (9)

Thus F−1
n = F ∗n/n. When conducting DFT on a tensor A ∈

Rn1×n2×n3 , it actually performs the DFT on all the tubes of
A, i.e. Ā(i, j, :) = F n3A(i, j, :) ∀(i, j). Then, we have

(F n3 ⊗ In1) · bcirc(A) · (F−1
n3
⊗ In2) = Ā,

where ⊗ denotes the Kronecker product and (F n3 ⊗
In1)/

√
n3 is orthogonal. By using (9), we have the following

properties which will be used frequently:

‖A‖2F =
1

n3
‖Ā‖2F , (10)

〈A,B〉 =
1

n3
〈Ā, B̄〉. (11)

3. Details of Algorithm 1
In this section, we use ADMM [2] to solve problem prob-

lem (2) in manuscript because of its efficiency in solving this
problem, which includes linear constraint and involves the



nuclear and `2,1 norms. Besides, since problem (2) is con-
vex with two blocks of variables, the theoretical convergence
analysis in [2] can guarantee the convergence of ADMM. We
first write down the augmented Lagrangian function:

H(L,E,J , β) =‖L‖∗ + λ‖E‖1 + 〈J ,X −L− E〉

+
β

2
‖X −L− E‖2F ,

where J is Lagrange multiplier and β is the penalty parame-
ter. Then we can alternately update L and E in each iteration
by minimizing H(L,E,J , β) with other variables fixed.
Updating L: We only need to minimize the following opti-
mization problem:

Lk+1 = argmin
L

‖L‖∗ +
βk
2

∥∥∥∥X −L− Ek +
J k

βk

∥∥∥∥2

F

.

Thus, we can optimize its equivalent problem:

L̄k+1 = argmin
L̄

1

n3

(
‖L̄‖∗ +

βk
2
‖R̄− L̄‖2F

)
,

where R = X − Ek + J k/βk, R̄ = fft(R, [], 3) and
R̄ = bdiag(R̄). Note that L̄ is a diagonal block matrix.
Accordingly, we only need to update all the diagonal block
matrices L̄(i) (i = 1, · · · , n3) by

L̄
(i)
k+1 = S 1

βk

(
R̄(i)

)
, (i = 1, · · · , n3), (12)

where Sν(·) is the singular value thresholding (SVT) opera-
tor [3]. Finally, we can compute Lk+1 = ifft(L̄k+1, [], 3).
Updating E: We can update E by solving

Ek+1 = argmin
E

λ‖E‖2,1 +
βk
2

∥∥∥∥X −Lk+1 − E +
J k

βk

∥∥∥∥2

F

and obtain its closed form solution:

E(:, i, :)k+1 =

{
‖Qi‖F−λ/βk
‖Qi‖F Qi, if ‖Qi‖F ≥ λ/βk;

0, otherwise,
(13)

where Q = X −Lk+1 + J k

βk
and Qi = Q(:, i, :).

Note that our optimization method can be implemented in
parallel, since from Eqn. (12), we can observe that at each it-
eration all lateral slices L̄

(i)
k+1 (i = 1, · · · , n3) of L̄ can be

parallelly updated when updating Lk+1. Eqn. (13) also im-
plies that when updating Ek+1, its frontal slices Ek+1(:, i, :
) (i = 1, · · · , n2) can also be parallelly computed.

4. Proofs of Theorem 1
Now we prove Theorem 1 in manuscript. Sec. 4.1 proves

the dual conditions of the OR-TPCA problem. Sec. 4.2 pro-
vides a way to construct the dual certificates such that dual

conditions holds. Sec. 4.3 gives the proofs of some lemmas
which are used in Sec. 4.2.

Before we prove Theorem 1, we first prove that any guar-
antee proved for the Bernoulli distribution equivalently holds
for the uniform distribution, which is stated in Lemma 3. Ac-
cording to this conclusion, we will assume that Θ ∼ Ber(p)
in the rest of this document.

Lemma 3. (Equivalence of sampling models) If the exact
recovery, i.e. exactly recovering the tensor column space and
detecting outliers, is guaranteed for the Bernoulli distribu-
tion, then it also holds for the uniform distribution. Con-
versely, if the exact recovery is proved for the uniform dis-
tribution, then it also holds for the Bernoulli distribution.

4.1. Dual Conditions

Before we introduce the dual conditions of OR-TPCA, we
first present the subgradient of tensor nuclear norm, which
will be used for constructing the dual certificates.

Lemma 4. (Subgradient of tensor nuclear norm) [4] Let
A ∈ Rn1×n2×n3 with rankt(A) = r and its skinny t-
SVD be A = U ∗ S ∗ V∗. The subgradients of ‖A‖∗ are
∂‖A‖∗ = {U ∗ V∗ + W | PT (W) = 0, ‖W‖ ≤ 1.}

Now we present the dual conditions of OR-TPCA, which
is stated in Lemma 5.

Lemma 5. (Dual conditions of OR-TPCA) Assume that
Range(L0) = Range(PΘ⊥

0
(L0)), E0 6∈ Range(L0), and

(L̃, Ẽ) = (L0 +H,E0−H) is an arbitrary solution to the
OR-TPCA problem. Let (L?,E?) = (L0 +PΘ0

PU0
(H),

E0 − PΘ0
PU0

(H)). Suppose that ‖PΘ?PV?‖ < 1,
λ > 4

√
µ1r/

√
n2n3, and L? obeys the tensor column-

incoherence condition. Then if there are a pair (W ,F) obey-
ing

W = λ (B(E?) + F) , (14)

with PV?(W) = 0, ‖W‖ ≤ 1/2, PΘ?(F) = 0, and
‖F‖2,∞ ≤ 1/2, then L̃ spans the same tensor column space
as that of L0 and the support set Θ̃ of Ẽ is the same as the
support set Θ0 of E0.

Proof. The subgradients of tensor nuclear norm and tensor
`2,1 norm can be written as

∂L?‖L‖∗={U? ∗ V∗? + W?, | PT ?
(W?)=0, ‖W?‖≤1},

∂E?‖E‖2,1 ={B(E?) + H?, | PΘ?(H?)=0, ‖H?‖2,∞≤1}.

We also have

‖U? ∗ V∗?‖2,∞ = max
j
‖U? ∗ V∗? ∗ e̊j‖F

= max
j
‖V∗? ∗ e̊j‖F

≤
√

µ1r

n2n3
.



Since the tensor nuclear norm and the operator norm are dual,
there exists a tensor Ŵ such that 〈Ŵ ,PV⊥

?
PU⊥

0
(H)〉 =

‖PV⊥
?
PU⊥

0
(H)‖∗ and ‖Ŵ‖ ≤ 1. Then we set W? =

PU⊥
0
PV⊥

?
(Ŵ). In this way, W? obeys W? ∈ PT ⊥

?
since

U? = U0. As E0 6∈ Range(L0) = U0, the support set Θ? of
(E0 −PΘ0

PU0
(H)) is equal to Θ0. Then similarly, thanks

to the duality between the `2,1 norm and the `2,∞, we can pick
a H? ∈ PΘ⊥

?
such that 〈H?,PΘ⊥

?
(H)〉 = ‖PΘ⊥

?
(H)‖2,1 =

‖PΘ⊥
0

(H)‖2,1. On the other hand, we can establish:

λ〈B(E?),PU⊥
0

(H)〉
=〈W − λF ,PU⊥

0
(H)〉

=〈W ,PU⊥
0

(H)〉 − λ〈F ,PU⊥
0

(H)〉

≥ − 1

2
‖PV⊥

?
PU⊥

0
(H)‖∗ −

λ

2
‖PΘ⊥

?
PU⊥

0
(H)‖2,1,

where the last inequality holds because we have W ∈ PV⊥
?

and F ∈ PΘ⊥
?

.
Note that both PΘ0

and PΘ⊥
0

obey PΘ0
PQ =

PQPΘ0
and PΘ⊥

0
PQ = PQPΘ⊥

0
, where PQ can be

PU0
,PU⊥

0
,PV? , etc. Define Ĥ = PΘ⊥

0
PU0

(H) +

PΘ⊥
0
PU⊥

0
(H) + PΘ0

PU⊥
0

(H), we can further obtain

‖L̃‖∗ + λ‖Ẽ‖2,1 − ‖L?‖∗ − λ‖E?‖2,1
≥〈U? ∗ V∗? + W?, L̃−L?〉+ λ〈B(E?) + H?, Ẽ − E?〉

=〈U? ∗ V∗? + W?, Ĥ〉 − λ〈B(E?) + H?, Ĥ〉
=〈W?,PU⊥

0
(H)〉−λ〈H?,PΘ⊥

0
(H)〉+〈U? ∗ V∗?,PΘ⊥

0
(H)〉

− λ〈B(E?),PU⊥
0

(H)〉

≥‖PV⊥
?
PU⊥

0
(H)‖∗+λ‖PΘ⊥

?
(H)‖2,1−

√
µ1r

n2n3
‖PΘ⊥

0
(H)‖2,1

− 1

2
‖PV⊥

?
PU⊥

0
(H)‖∗ −

λ

2
‖PΘ⊥

0
PU⊥

0
(H)‖2,1

=
1

2
‖PV⊥

?
PU⊥

0
(H)‖∗ +

(
λ

4
−
√

µ1r

n2n3

)
‖PΘ⊥

0
(H)‖2,1

+
3λ

4
‖PΘ⊥

?
(H)‖2,1 −

λ

2
‖PΘ⊥

?
PU⊥

0
(H)‖2,1

≥1

2
‖PV⊥

?
PU⊥

0
(H)‖∗ +

(
λ

4
−
√

µ1r

n2n3

)
‖PΘ⊥

0
(H)‖2,1

+
λ

4
‖PΘ⊥

?
PU⊥

0
(H)‖2,1.

As we have λ > 4
√
µ1r/

√
n2n3 and (L̃, Ẽ) is an arbi-

trary optimal solution, we can obtain ‖PV⊥
?
PU⊥

0
(H)‖∗ =

‖PΘ⊥
?
PU⊥

0
(H)‖2,1 = ‖PΘ⊥

0
(H)‖2,1 = 0. Therefore, we

have H ∈ Θ0 and PU⊥
0

(H) ∈ V? ∩ Θ? = 0, due to
‖PΘ?PV?‖ < 1. In this way, we have H ∈ U0 and thus
H ∈ Θ0 ∩ U0, which further demonstrates that Ũ ⊆ U0 and
Θ̃ ⊆ Θ0.

On the other hand, since H ∈ Θ0 ∩U0 and Range(L0) =

Range(PΘ⊥
0

(L0)), Ũ = Range(L̃) = Range(L0 + H) =

Range(L0) = U0 holds. Now if Θ̃ 6= Θ0, then there exits
an i ∈ (Θ0 ∩ Θ̃⊥) such that Ẽ(:, i, :) = 0. Accordingly, we
have L̃(:, i, :) = L0(: i, :) + E0(:, i, :) 6∈ U0. But, we have
L̃(:, i, :) ∈ Ũ = U0. Hence, we can obtain Θ̃ = Θ0.

Lemma 5 implies that if we can find a dual certificate W
obeying

(a) W ∈ V⊥? ,
(b) PΘ?(W) = λB(E?),
(c) ‖W‖ ≤ 1/2,

(d) ‖PΘ⊥
?

(W)‖2,∞ ≤ λ/2,

(15)

then we can exactly recover the tensor column space U0 of
L0 and the support set Θ0 of outliers E0.

4.2. Dual Certification via Least Squares

Before we construct the dual certificate W , we first give
some key lemmas, which will be proved in Sec. 4.3.

Lemma 6. Assume Θ̂ ∼ Ber(κ). Then with high probability,∥∥∥∥PV? −
1

κ
PV?PΘ̂PV?

∥∥∥∥ ≤ ε,
provided that κ ≥ c3µ1r log(n(1))/(ε

2n2) for some numeri-
cal constant c3 > 0.

Corollary 7. Suppose Θ? ∼ Ber(ρ). Then with high proba-
bility,

‖PΘ?PV?‖2 < (1− ρ)ε+ ρ < 1,

provided that 1 − ρ ≥ c3µ1r log(n(1))/(ε
2n2) for some nu-

merical constant c3 > 0.

Now we construct the dual certificate W and verify its va-
lidity.

Lemma 8. Suppose that Θ? ∼ Ber(ρ) and the assumptions
of Theorem 1 (in manuscript) are satisfied. Then with high
probability,

W = λPV⊥
?

+∞∑
k=0

(PΘ?PV?PΘ?)k(B(E?))

obeys the dual conditions (15).

Proof. Note that by Corollary 7, we have ‖PΘ?PV?PΘ?‖ =
‖PV?PΘ?‖2 < 1. Thus, W is well defined. Since we use
a smaller space V? ⊂ T ? instead of T ? to construct W , we
can avoid the case that Θ?∩T ? 6= 0, i.e., ‖PΘ?PT ?PΘ?‖ =
‖PT ?PΘ?‖2 = 1, leading to a divergent Neumann se-
ries

∑+∞
k=0(PΘ?PT ?

PΘ?)k. Now we verify the conditions
in (15) in turn.



Proof of (15) (a): It is easy to verify that W ∈ V⊥? .
Proof of (15) (b): By the construction of W , we have

PΘ?(W)

=λPΘ?PV⊥
?

+∞∑
k=0

(PΘ?PV?PΘ?)k(B(E?))

=λPΘ?(I −PV?)

+∞∑
k=0

(PΘ?PV?PΘ?)k(B(E?))

=λPΘ?(I −PΘ?PV?PΘ?)

+∞∑
k=0

(PΘ?PV?PΘ?)k(B(E?))

=λPΘ?

(
+∞∑
k=0

(PΘ?PV?PΘ?)k−
+∞∑
k=1

(PΘ?PV?PΘ?)k

)
(B(E?))

=λPΘ?(B(E?))
=λB(E?).

Thus, W obeys the condition (15) (b).
Proof of (15) (c): Let G =

∑+∞
k=0(PΘ?PV?PΘ?)k. Since

‖B(E)‖ ≤
√

log (n2)/4, then we have

‖W‖ ≤λ‖PV⊥
?
‖‖G‖‖B(E?)‖ = λ

1

1− σ2

√
log (n2)

4
,

where σ =
√
ρ+ ε(1− ρ). If λ ≤ 2(1 − σ2)/

√
log (n2),

then ‖W‖ ≤ 1/2. Note that in Lemma 5, we require λ >

4
√

µ1r
n2n3

. Thus, λ ∈
(

4
√

µ1r
n2n3

, 2(1−σ2)√
log (n2)

]
.

Proof of (15) (d): G and σ are defined as the same as above.
Thus, we can obtain

PΘ⊥
?

(W) =λPΘ⊥
?
PV⊥

?
G(B(E?))

=λPΘ⊥
?

(I −PV?)G(B(E?))
=− λPΘ⊥

?
PV?G(B(E?)).

We first prove an inequality:

max
j

∑
i,k

‖PV?(eijk)‖2F = max
j

∑
i,k

‖̊ei ∗ ėk ∗ e̊∗j ∗ V? ∗ V∗?‖2F

= max
j

∑
i,k

‖̊ei ∗ ėk ∗ e̊∗j ∗ V?‖2F

= max
j

∑
i,k

‖(ėk ∗ e̊∗j ∗ V?)(i, :, :)‖2F

= max
j

∑
k

‖ėk ∗ e̊∗j ∗ V?‖2F

= max
j
n3‖̊e∗j ∗ V?‖2F

≤n3
µ1r

n2n3

=
µ1r

n2
,

where the third equality holds because Q(i, :, :) = e̊i ∗ Q,
where Q = ėk ∗ e̊∗j ∗ V?, and the fifth equality holds because

of ‖Q‖F = ‖̊e∗j ∗ V?‖F since ėk does not change the values
of the entries in e̊∗j ∗V? but exchanges the positions of entries.

Let Q = PV?G(B(E?)). Then, we can obtain

‖Q‖22,∞ = max
b

∑
i,k

〈PV?G(B(E?)), eibk〉2

= max
b

∑
i,k

〈B(E?),GPV?(eibk)〉2

= max
b

∑
i,k

∑
j

〈B(E?) ∗ e̊j ,GPV?(eibk) ∗ e̊j〉2

≤max
b

∑
i,j,k

‖B(E?) ∗ e̊j‖2F ‖GPV?(eibk) ∗ e̊j‖2F

≤max
b

∑
i,j,k

‖GPV?(eibk) ∗ e̊j‖2F

= max
b

∑
i,k

‖GPV?(eibk)‖2F

≤max
b

∑
i,k

‖G‖2‖PV?(eibk)‖2F

≤µ1r

n2
(

1

1− σ2
)2

≤1

4
,

where the second inequality holds since B(E?) ∗ e̊j =
(B(E?))(:, j, :) and the last inequality holds because we re-
quire r ≤ n2(1−σ2)2/(4µ1). Note that when proving Corol-
lary 7, we demand r ≤ (1− ρ)ε2n2/(c3µ1 log (n(1))). Thus,
we can further establish:

‖PΘ⊥
?
W‖2,∞ =λ‖PΘ⊥

?
PV⊥

?
G(B(E?))‖2,∞

≤λ‖PV⊥
?
G(B(E?))‖2,∞

=
1

2
λ.

So W obeys the condition (15) (d).
Checking the ranges of λ and r: When we prove the above
conclusions, we require

λ ∈

(
4

√
µ1r

n2n3
,

2(1− σ2)√
log (n2)

]
,

and

r ≤ min

(
n2(1− σ2)2

4µ1
,

(1− ρ)ε2n2

c3µ1 log (n(1))

)
.

Thus, we have
r ≤ ρrn2

µ1 log (n(1))
,

where ρr is a constant. On the other hand, let ρ ≤ 0.5 − ε,
then we have 2(1 − σ2) ≥ 1. Accordingly, we can further
obtain

λ ∈

ε
√

8
√

2

c3n3

1√
log(n(1))

,
1√

log (n2)

 ,



Since ε is very small and c3 is a constant, we have

ε
√

8
√

2/(c3n3)≤1. Moreover, we have n(1) = max(n1, n2)

≥ n2. So we can just set λ = 1/
√

log (n2). The proof is
completed.

4.3. Proofs of Some Lemmas

We first prove Lemma 9 which will be used in the proofs of
Lemma 3. Lemma 9 proves that the success of exact recovery
is monotone on the outlier number. That is, if there are q
outliers and OR-TPCA can exactly recover the tensor column
space and detect q outliers, then after removing some outliers
from the tensor data, OR-TPCA still can recover the desired
tensor column space and detect the remaining outliers.

Lemma 9. (Elimination Lemma) Assume that any optimal
solution (L,E) to the OR-TPCA problem with input tensor
X = L0 + E0 can exactly recover the tensor column space
Range(L0) and the outlier support Θ0. Then any optimal
solution (L̃, Ẽ) to the OR-TPCA problem with input X̃ =
L0 + PΘ(E0) also can exactly recover Range(L0) and its
outlier support set Θ, where Θ ⊆ Θ0.

Then, we introduce another lemma which is used for prov-
ing Lemma 6.

Lemma 10. (Matrix (Operator) Bernstein Inequality) [5] Let
Xi ∈ Rd1×d2 (i = 1, · · · , s) be independent zero-mean,
matrix valued random variables. Suppose ‖Xi‖ ≤ ν and
max (‖

∑
i E [XiX

∗
i ] ‖, ‖

∑
i E [X∗iXi] ‖) ≤ ω. Then, for

any t ≥ 0, we have

P

[∥∥∥∥∥
s∑
i=1

Xi

∥∥∥∥∥ > t

]
≤ (d1 + d2)exp

(
− t2

2ω + 2
3νt

)
.

If t ≤ ω/ν, then

P

[∥∥∥∥∥
s∑
i=1

Xi

∥∥∥∥∥ > t

]
≤ (d1 + d2)exp

(
−3t2

8ω

)
.

4.3.1 Proof of Lemma 3

Proof. We use PUnif(m) and PBer(p) to denote the probabili-
ties calculated under the uniform and Bernoulli models, re-
spectively. Let “Success” be the event that the algorithm
succeeds, i.e. exactly recovering the tensor column space
Range(L0) and the outlier support Θ0 of E0.

By Lemma 9, we know that the success of exactly recovery
is monotone on the number of outliers. That is, for any k ≤
m, PUnif(k)(Success) ≥ PUnif(m)(Success). On the other
hand, we have

PBer(p)(Success | |Θ| = k) = PUnif(k)(Success).

By using the above two conclusions, we can further obtain

PBer(p)(Success)

=

n2∑
k=0

PBer(p)(Success | |Θ| = k)PBer(p)(|Θ| = k)

≤
m−1∑
k=0

PBer(p)(|Θ|=k)+

n2∑
k=m

PUnif(k)(Success)PBer(p)(|Θ|=k)

≤PBer(p)(|Θ|<m) + PUnif(m)(Success).

Let p = m/n2 + ε, where ε > 0 is a constant. Then the con-
clusion follows from PBer(p)(|Θ|<m) ≤ exp

(
−ε2n2/(2p)

)
.

In a similar way, we have

PBer(p)(Success)

=

n2∑
k=0

PBer(p)(Success | |Θ| = k)PBer(p)(|Θ| = k)

=

n2∑
k=0

PUnif(k)(Success)PBer(p)(|Θ| = k)

≥
m∑
k=0

PUnif(k)(Success)PBer(p)(|Θ| = k)

≥PUnif(m)(Success)

m∑
k=0

PBer(p)(|Θ| = k)

≥PUnif(m)(Success)PBer(p)(|Θ| ≤ m).

By choosing an appropriate m such that PBer(p)(|Θ| > m) is
exponentially small. The proof is completed.

4.3.2 Proof of Lemma 6

Proof. Define a set φ = {(Z1,Z2) | ‖Z1‖F ≤ 1, Z2 =
±Z1}. Since

(
κ−1PV?PΘ̂PV? −PV?

)
is a self-adjoint

operator, we can use the variational form of the operator norm
to compute its operator norm:∥∥∥∥ 1

κ
PV?PΘ̂PV? −PV?

∥∥∥∥
= sup

φ

∑
i,j,k

(
δj
κ
− 1

)
〈PV?(Z1), eijk〉 〈PV?(Z2), eijk〉

= sup
φ

∑
i,j,k

δj − κ
κn2

3

〈
bdiag

(
PV?(eijk)

)
,Z̄1

〉〈
bdiag

(
PV?(eijk)

)
,Z̄2

〉

=

∥∥∥∥∥∥
∑
i,j,k

δj − κ
κn3

bdiag
(
PV?(eijk)

)
⊗ bdiag

(
PV?(eijk)

)∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
j

δj − κ
κn3

∑
i,k

bdiag
(
PV?(eijk)

)
⊗ bdiag

(
PV?(eijk)

)∥∥∥∥∥∥ ,
where δj obeys i.i.d. Bernoulli distribution Ber(κ) and
⊗ denotes the tensor product. Note that the fourth



equality holds because
∑
i,j,k

δj−κ
κn3

bdiag
(
PV?(eijk)

)
⊗

bdiag
(
PV?(eijk)

)
is a self-adjoint matrix operator and its

operator norm is defined on a set ϕ = {(D̄1, D̄2) | ‖D̄1‖F ≤
1, D̄2 = ±D̄1} instead of φ which leads to a factor n3. Note
that bdiag

(
PV?(eijk)

)
is a diagonal matrix and thus D̄1

and D̄2 are also diagonal matrices and there exist two ten-
sors D1 and D2 such that D̄1 = bdiag(fft(D1, [], 3)) and
D̄2 = bdiag(fft(D2, [], 3)). For brevity, we further define

H̄j=
δj − κ
κn3

∑
i,k

bdiag
(
PV?(eijk)

)
⊗ bdiag

(
PV?(eijk)

)
,

and have

∥∥∥∥ 1

κ
PV?PΘ̂PV? −PV?

∥∥∥∥ =

∥∥∥∥∥∥
∑
j

H̄j

∥∥∥∥∥∥ .
By the above definitions, we have H̄j is self-adjoint and

E[H̄j ] = 0. To prove the conclusions by the matrix Bernstein

inequality, we need to bound ‖H̄j‖ and
∥∥∥∑j E[H̄jH̄

∗
j ]
∥∥∥. We

first prove a vital inequality:

‖PV?(Z)‖22,∞
= max

j

∑
i,k

〈Z,PV?(eijk)〉2

= max
j

∑
i,k

〈Z, e̊i ∗ ėk ∗ e̊∗j ∗ V? ∗ V∗?〉2

= max
j

∑
i,k

〈ė∗k ∗ e̊∗i ∗Z, e̊∗j ∗ V? ∗ V∗?〉2

≤max
j

∑
i,k

‖ė∗k ∗ e̊∗i ∗Z‖2F ‖̊e∗j ∗ V? ∗ V∗?‖2F

= max
j

∑
i,k

‖Z(i, :, :)‖2F ‖̊e∗j ∗ V?‖2F

= max
j

∑
i

n3‖Z(i, :, :)‖2F ‖̊e∗j ∗ V?‖2F

=n3

∑
i

‖Z(i, :, :)‖2F max
j
‖̊e∗j ∗ V?‖2F

≤n3‖Z‖2F
µ1r

n2n3

=
µ1r

n2
‖Z‖2F ,

where the fourth equality holds because Z(i, :, :) = e̊∗i ∗ Z
and if let Q = ė∗k ∗ Z(i, :, :), then ‖Q‖F = ‖Z(i, :, :)‖F
since ėk does not change the values of the entries in Z(i, :, :)
but exchanges the positions of the entries. Then, by utilizing

the above inequality, we can bound ‖H̄j‖:

‖H̄j‖

= sup
ϕ

δj − κ
κn3

∑
i,k

〈
bdiag

(
PV?(eijk)

)
,D̄1

〉〈
bdiag

(
PV?(eijk)

)
,D̄2

〉
≤ sup

ϕ

n3

κ
|δj − κ|

∑
i,k

|〈D1,PV?(eijk)〉||〈D2,PV?(eijk)〉|

= sup
ϕ

n3

κ
|δj − κ|

∑
i,k

|〈PV?(D1), eijk〉|2

≤ sup
ϕ

n3

κ

∑
i,k

〈PV?(D1), eijk〉2

≤ sup
ϕ

n3

κ
‖PV?(D1)‖22,∞

≤ sup
ϕ

n3

κ

µ1r

n2
‖D1‖2F

≤µ1r

κn2
:= ν.

We can also establish:

‖
∑
j

E[H̄jH̄
∗
j ]‖

=sup
ϕ

∑
j

E
[
(δj − κ)2

]
κn3

∑
i,k

〈D1,PV?(eijk)〉〈D2,PV?(eijk)〉

2

=
(1− κ)n2

3

κ
sup
ϕ

∑
j

∑
i,k

〈D1,PV?(eijk)〉〈D2,PV?(eijk)〉

2

≤ (1− κ)n2
3

κ
sup
ϕ

∑
j

∑
i,k

|〈D1,PV?(eijk)〉||〈D2,PV?(eijk)〉|

2

=
(1− κ)n2

3

κ
sup
ϕ

∑
j

∑
i,k

〈D1,PV?(eijk)〉2
2

≤ (1− κ)n2
3

κ
sup
ϕ

∑
j

‖PV?(D1)‖22,∞

∑
i,k

〈D1,PV?(eijk)〉2


≤ (1− κ)n2
3

κ

µ1r

n2n3
sup
ϕ

∑
j

∑
i,k

〈D1,PV?(eijk)〉2


≤µ1rn3

κn2
sup
ϕ

∑
j

∑
i,k

〈D1,PV?(eijk)〉2


≤µ1rn3

κn2
sup
ϕ
‖D1‖2F

=
µ1r

κn2
:= ω



As ω/ν = 1 > ε, then by Lemma 10 we can establish

P
(∥∥∥∥PV? −

1

κ
PV?PΘ̂PV?

∥∥∥∥ > ε

)

=P

∥∥∥∥∥∥
∑
j

E[H̄j ]

∥∥∥∥∥∥ > ε


≤(n1 + n2)n3 exp

(
−3ε2

8ω

)
≤(n1 + n2)n3 exp

(
−3ε2κn2

8µ1r

)
.

Let κ ≥ c3µ1r log(n(1))/(ε
2n2). Then, the following in-

equality holds.

P
(∥∥∥∥PV? −

1

κ
PV?PΘ̂PV?

∥∥∥∥ ≤ ε)
=1− P

(∥∥∥∥PV? −
1

κ
PV?PΘ̂PV?

∥∥∥∥ > ε

)
≥1− (n1 + n2)n3 exp

(
−3ε2κn2

8µ1r

)
≥1− 2n3(n(1))

− 3c3
8 +1.

By choosing an appropriate c3, we have P(‖PV? −
κ−1PV?PΘ̂PV?‖ ≤ ε) ≥ 1 − n−10

(1) . The proof is com-
pleted.

4.3.3 Proof of Corollary 7

Proof. Since Θ⊥? ∼ Ber(1− ρ), by Lemma 6 we have∥∥∥∥PV? −
1

1− ρ
PV?PΘ⊥

?
PV?

∥∥∥∥ ≤ ε,
provided that 1 − ρ ≥ c3µ1r log(n(1))/(ε

2n2). Note that
I = PΘ? + PΘ⊥

?
. We can further obtain∥∥∥∥PV? −

1

1− ρ
PV?PΘ⊥

?
PV?

∥∥∥∥
=

1

1− ρ
‖ρPV? −PV?PΘ?PV?‖ .

Thus, we have

‖PΘ?PV?‖2 =‖PV?PΘ?PV?‖
≤‖PV?PΘ?PV? − ρPV?‖+ ‖ρPV?‖
≤(1− ρ)ε+ ρ.

Thus, the conclusion is established.

4.3.4 Proof of Lemma 9

Proof. First, it is easy to obtain the following inequality:

‖L̃‖∗ + λ‖Ẽ + PΘ⊥∩Θ0
(E)‖2,1

≤‖L̃‖∗ + λ‖Ẽ‖2,1 + λ‖PΘ⊥∩Θ0
(E)‖2,1

≤‖L‖∗ + λ‖PΘ(E)‖2,1 + λ‖PΘ⊥∩Θ0
(E)‖2,1

≤‖L‖∗ + λ‖PΘ0
(E)‖2,1

≤‖L‖∗ + λ‖E‖2,1,

where the second inequality holds because (L̃, Ẽ) is the op-
timal solution to the OR-TPCA problem with input X̃ =
L0 + PΘ(E0) and thus

‖L̃‖∗ + λ‖Ẽ‖2,1 ≤ ‖L‖∗ + λ‖PΘ(E)‖2,1.

On the other hand, we have

L̃ + Ẽ + PΘ⊥∩Θ0
(E) = X̃ + PΘ⊥∩Θ0

(E) = X .

This means that
(
L̃, Ẽ + PΘ⊥∩Θ0

(E)
)

is also an optimal so-
lution to the OR-TPCA problem with input X . Therefore, it
can also exactly recover the tensor column space Range(L0)
and the outlier support Θ0. That is, the tensor column space
of L̃ is Range(L0) and Ẽ 6∈ Range(L̃) = Range(L0). So
the support set Θ̃ of Ẽ obeys Θ ⊆ Θ̃. If Θ 6= Θ̃, then
there exists an index i ∈ Θ⊥ ∩ Θ̃. Accordingly, we have
Ẽ(:, i, :) 6∈ Range(L0). However, since X̃ = L0 + PΘ(E0),
Ẽ(:, i, :) = L0(:, i, :) ∈ Range(L0). Therefore, Θ = Θ̃
holds. The proof is completed.

5. Proofs of Theorem 2
5.1. Main Proof

We first give two theorems that respectively corresponding
to Steps 1 and 2 in Algorithm 2 in the manuscript, which will
be used later.

Theorem 11. Suppose that each lateral slice of X ∈
Rn1×n2×n3 is sampled by i.i.d Bernoulli distribution
Ber(s/n2). Let X l be the selected lateral slices from X . Then
with probability at least 1 − δ, the clean data in X l exactly
spans the desired tensor column space Range(PΘ⊥

0
(X )) =

Range(L0), provided that

s ≥ 2µ1r log
(r
δ

)
,

where r = rank(L0) and µ1 is the tensor column-incoherence
parameter in Eqn. (3).

Theorem 11 implies that Step 1 in Algorithm 2 can guar-
antee that the clean data in the sampled data spans the desired
tensor column space which is the basis of the subsequent steps
in Algorithm 2.



Theorem 12. Assume that all the assumptions in Theorem 1
are fulfilled for the pair (Ll,E l). Then Step 2 in Algorithm 2
exactly recovers the subspace of Ll and the support set Θl of
E l with a high probability at least 1 − c1n−10

(1) , where c1 is a
positive constant, provided that

s ≥ c2µ1r log(n(1)),

where c2 is a constant and µ1 is the tensor column incoher-
ence parameter in Eqn. (3).

Now we utilize the above Theorems 11 and 12 to prove
Theorem 2.

Proof. To prove Theorem 2 in manuscript, we have to prove:
(1) Step 1 in Algorithm 2 can guarantees that the clean data
in the randomly sampled data X l can exactly span the desired
column space Range(L0) with a probability at least 1− δ; (2)
Step 2 in Algorithm 2 can exactly recover the tensor column
space of the sampled data which is shared by the entire data
and detect the outliers in the sampled data; (3) Step 3 can suc-
cessfully detect the outliers in the remaining data. As for Step
3, it is easy to prove it if Steps 1 and 2 succeed. Since outliers
are not in the subspace of the clean data which is guaranteed
by the unambiguity condition in the manuscript, accordingly,
the outliers in the remaining data are not located in the recov-
ered subspace and thus can be detected.

As for Step 1, by Theorem 11, we know that if

s ≥ 2µ1r log
(r
δ

)
,

then with a probability at least 1 − δ, the clean data of X l

spans the same tensor column space Range(L0).
About Step 2, by Theorem 12, we have that if

s ≥ c2µ1r log(n(1)),

then with probability at least 1−c1n−10
(1) , Step 2 exactly recov-

ers tensor column space Range(Ll) of X l, which also obeys
Range(Ll) = Range(L0), and the support set Θl of E l.

Thus, combine Theorems 11 and 12, if

s ≥ max
(
c2µ1r log(n(1)), 2µ1r log

(r
δ

))
,

the first two steps exactly recover the tensor column space
Range(L0) and detect outliers E l in X l with a probability
at least 1 − δ. At the same time, because of Range(Ll) =
Range(L0), the data in X r except outliers Er can be linearly
represented by Ll and by this way, we also can distinguish
normal samples and outliers. The proof is completed.

5.2. Proofs of Some Theorems

Before we prove Theorem 11, we first give one lemma and
one theorem, which will be used later.

Theorem 13. (Matrix Chernoff Bound) [6] Consider a finite
sequence {Xk} of independent, random, Hermitian matrices.
Suppose that

0 ≤ λmin(Xk) ≤ λmax(Xk) ≤ l.

Define Y =
∑
kXk, and µr as the r-th largest eigenvalue

of the expectation E(Y ). That is, µr = λr(E(Y )). Then for
ε ∈ [0, 1),

P (λr(Y ) > (1− ε)µr) ≥1− r
(

e−ε

(1− ε)1−ε

)µr
l

≥1− re−
µrε

2

2l

holds.

Lemma 14. [7] For an arbitrary matrix X ∈ Cm×n, assume
that the skinny SVD of X is X = UΣV ∗. Then for any set
of coordinates Θ, we have rank(X(Θ,:)) = rank(U(Θ,:)) and
rank(X(:,Θ)) = rank(V(:,Θ)).

5.2.1 Proof of Theorem 11

Proof. For brevity, we use Z ∈ Rn1×n2×n3 denote the clean
data PΘ⊥

0
(X ) in X . Note that PΘ0(Z) = 0. Assume that

Q ∈ Rn1×n2×n3 is the sampled lateral slices of Z with i.i.d
Bernoulli distribution Ber(s/n2). Note that if the i-sampling-
probability is larger or equal than s/n2, then the i-th lateral
slice Q(:, i, :) = Z(:, i, :); otherwise, Q(:, i, :) = 0. In this
way, Q is the clean data of the sampled data in X l. So we
only need to prove Range(Q) = Range(L0).

As defined in Definition 2.5 in the manuscript, for an ar-
bitrary tensor, its tensor column space is the union of the
column spaces of its all frontal slices. So we only need
to prove that the i-th frontal slice Q̄(i) of Q̄ spans the
same column space as the i-th frontal slice Z̄(i) of Z̄, i.e.
Range(Q̄(i)) = Range(Z̄(i)) (i = 1, · · · , n3). Assume
r = (rank(Z̄(1)); · · · ; rank(Z̄(n3))) ∈ Rn3 and the tensor
tubal rank r = rankt(Z) = max(r1, · · · , rn3

).
On the other hand, when conducting DFT on Z , the t-th

column Z̄
(i)
(:,t) of the i-th frontal slice Z̄(i) is computed from

the t-th sample Z(:, t, :). Indeed, we have

Z̄(i)=
[
(fiM

1)∗, (fiM
2)∗, · · · , (fiM j)∗, · · · , (fiMn2)∗

]
,

where fi is the i-th row of the DFT matrix Fn3
and M j ∈

Rn3×n1 is the transpose matrix of the j-th lateral slice of
Z , i.e. M j = (Z(:, j, :))

∗. Therefore, we have Q̄
(i)
(:,t) =

δt(fiM
t) = δtZ̄

(i)et (t = 1, · · · , n2; i = 1, · · · , n3),
where et ∈ Rn2 is standard matrix basis with 1 at the t-th
entry and δt = Ber(s/n2). We can further obtain Q̄(i) =∑n2

t=1 Z̄
(i)
(:,t)e

∗
t .

Assume that the skinny SVD of matrix Z̄(i) is ŪiS̄iV̄
∗
i .

Let Ti =
∑n2

t=1 δt(V̄
∗
i )(:,t)e

∗
t . Then, we have rank(Q̄i) =



rank(Ti). Define a positive semi-definite matrix,

Di = TiT
∗
i =

n2∑
t=1

δt(V̄
∗
i )(:,t)

(
(V̄ ∗i )(:,t)

)∗
.

Accordingly, we have σri(Ti)
2 = λri(Di), where σri(Ti) is

the ri-th singular value and λri(Di) is the ri-th eigenvalue.
Then we have

E(Di) =E

(
n2∑
t=1

δt(V̄
∗
i )(:,t)

(
(V̄ ∗i )(:,t)

)∗)

=
s

n2

n2∑
t=1

(V̄ ∗i )(:,t)

(
(V̄ ∗i )(:,t)

)∗
=
s

n2
V̄ ∗i V̄i

=
s

n2
I.

Thus, we have λri(E(Di)) = s/n2. Besides, we can estab-
lish

λmax

(
δt(V̄

∗
i )(:,t)

(
(V̄ ∗i )(:,t)

)∗)
=‖δt(V̄ ∗i )(:,t)‖22
≤‖(V̄ ∗i )(:,t)‖22
≤‖V̄(:, t, :)‖2F
≤n3‖V(:, t, :)‖2F
≤µ1r

n2
.

By utilizing Theorem 13, we can set µri = λri(E(Di)) =

s/n2 and l = λmax

(
δt(V̄

∗
i )(:,t)

(
(V̄ ∗i )(:,t)

)∗) ≤ µ1r/n2.
Therefore, we have

P (σri(Ti) = λri(Di) > 0) ≥ 1− rie
−
µri
2l = 1− rie

− s
2µ1r .

Note that σri(Ti) > 0 implies that rank
(
(V̄i)(:,Θ)

)
=

rank (Ti) ≥ ri, where Θ is the support of selected samples
by i.i.d. Ber(s/n2). By Theorem 14, we have rank(Q̄(i)) =

rank(Q̄
(i)
(:,Θ)) = rank

(
(V̄i)(:,Θ)

)
≥ ri. On the other hand,

Range(Q̄(i)) ⊆ Range(Z̄(i)). Therefore, we can further ob-
tain Range(Q̄(i)) = Range(Z̄(i)).

Since the tensor tubal rank of Z is r = max(r1, · · · , rn3
),

there exists a frontal slice Z̄(j) such that rank(Z̄(j)) = r. If
we set

P(σrj (Tj) > 0) ≥ 1− re−
s

2µ1r ≥ 1− δ,

where s ≥ 2µ1r log(r/δ), it can guarantee that P(σri(Ti) >
0) ≥ 1− δ (i 6= j). Thus, if s ≥ 2µ1r log(r/δ), with a prob-
ability at least 1 − δ, Range(Q) = Range(Z) = Range(L0)
holds. Thus, the conclusion in Theorem 11 holds.

5.2.2 Proof of Theorem 12

Proof. By Theorem 1 in the manuscript, if the sampled num-
ber n′2 obeys

n′2 ≥ c4µ1r log(n(1)), (16)

where c4 is a constant, Step 2 in Algorithm 2 can exactly re-
cover the tensor column space of Ll and the support set Θl of
E l with a high probability 1− c1n−10

(1) .
Now we prove that if we sample each lateral slice

of X with i.i.d. Bernoulli distribution Ber(s′/n2), where
s′ = 2c4µ1r log(n(1)), then the sampled number n′2 obeys
Eqn. (16). According to Bernoulli trial property in [7], which
states that if Θ ∼ Ber(d/n2), then with a probability at least
1− n−10

2 ,

1

2
d ≤ |Θ| = n′2 ≤ 2d,

provide that d ≥ c5 log(n2), where c5 is a constant. There-
fore, if s′ = c2µ1r log(n(1)), where c2 = 2c4, then n′2 obeys
the condition (16) with a probability at least 1 − n−10

2 . The
proof is completed.
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