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I. PROOF OF THEOREM 3.2
Before we prove Theorem 3.2, we introduce a lemma, which is described as follows.
Lemma 1.1 ([1], [2]): Suppose that f : Rm → R is a continuously differentiable function with Lipschitz continuous gradient

whose Lipschitz constant is L. Then for any x, y ∈ Rm and γ ≥ L,

f(x) ≤ f(y) + 〈x− y,∇f(y)〉+ γ

2
‖x− y‖22. (1)

Now, we prove Theorem 3.2.
proof Let f(Qi) =‖ H̃i−Qi ‖22 (i = 1, · · · , r). It is easy to check that f(Qi) satisfies Lemma 1.1, ∇f(Qi) = −2(H̃i−Qi)

and L = 2. We first prove the following inequality:
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where k denotes the number of iterations. Define βk =
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So if γ satisfies L = 2 < γ ≤ 4, we have that c ≤ 0, i.e., inequality (2) holds.
Note that gk+1 is the optimal solution to problem (4):

gk+1 = argmin
r∑

i=1
gi=t,gi≥0

r∑
i=1

α

g2i
‖ Qk+1

i ‖22 . (4)

So the following inequality holds.
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Then, combining inequalities (2) and (5), we can further obtain the following inequality:
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Since f(Qi) (i = 1, · · · , r) satisfies Lemma 1.1, the following inequality holds:
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Thus, we can obtain the following inequality:
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Therefore, F (Qk, gk) is monotonically decreasing. So F (Qk, gk) =
r∑
i=1
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‖ H̃i −Qki ‖22 + α
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≤ F (Q1, g1). Thus

{Qk} is bounded. Summing all the inequality (8) for all k ≥ 1, we obtain
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2
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As γ > L, the above implies that lim
k→∞
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(∀i = 1, · · · , r), lim
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gi = t > 0 and gi ≥ 0, the sequence {gk} is bounded.

II. PROOF OF THEOREM 3.3
Proof In Theorem 3.2, we have proved that the sequence {Qk, gk} is bounded. For any accumulation point (Q∗, g∗) of
{Qk, gk}, suppose a subsequence (Qkj , gkj ) fulfills lim

j→∞
Qkj = Q∗ and lim

j→∞
gkj = g∗. In each iteration, we denote

τk =
2α

t3

(
r∑
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‖ Qki ‖
2
3
2
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. (10)

Then there exists τ∗ such that lim
j→∞

τkj = τ∗. In our iteration process,∇QF (Qkj+1, gkj ) = 0,∇gF (Qkj+1, gkj+1)+τkj+1 = 0,

and
r∑
i=1

g
kj
i = t. Letting j → ∞, we have ∇QF (Q∗, g∗) = 0, ∇gF (Q∗, g∗) + τ∗ = 0, and

r∑
i=1

g∗i = t. So (Q∗, g∗) is a KKT

point.

III. FAST ALGORITHM FOR ROBUST PCA [3]
In this section, we introduce the `1-filtering for solving Robust PCA problem. We sketch it below.
`1-filtering first randomly samples a srr × scr submatrix Xs from X , where sr > 1 and sc > 1 are the row and column

oversampling rates, respectively. For simplicity, we assume that Xs is at the top left corner of matrix X . Then accordingly
X , A, and E is partitioned into:

X =

[
Xs Xc

Xr X̂s

]
, A =

[
As Ac

Ar Âs

]
, E =

[
Es Ec

Er Ês

]
, (11)

where A is the low rank matrix we need to recover and E is the sparse error matrix.
Then `1-filtering recovers As, called the seed matrix, from Xs by solving a small-sized Robust PCA problem. Since srr

and scr are both small as compared with m and n, the computation of recovering As is much cheaper than recovering the
whole A.
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Next, as the rank of A and As are both r, there must exist matrix Q and P satisfying the following equations (12)

Ac = AsQ, Ar = PTAs. (12)

Since the matrix E is sparse, the matrices Ec and Er are also sparse. So we can find matrix Q and P by minimizing the
following problems:

min
Ec,Q

‖ Ec ‖1, s.t. Xc = AsQ+ Ec, (13)

and
min
Er,P

‖ Er ‖1, s.t. Xr = PTAs + Er, (14)

respectively. For these two problems, using the alternating direction method (ADM) [4] to solve them is efficient. So we can
get P and Q, thus Ac and Ar can be also obtained. Finally, only Âs needs to be computed. By the low-rankness of A, we
can obtain

Âs = PTAsQ. (15)

In summary, the matrix A can be recovered with a complexity of O(r2(d +m)) at each iteration [3], which is much lower
than O(rmd) when d and m are large.
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